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Abstract

We address the problem of video quality prediction and
control for high resolution video transmitted over lossy
packet networks. We analyze how the user-perceived quality
is related to the average encoding bitrate for VBR MPEG-
2 video. We then show why simple distortion metrics (e.g.,
PSNR) may lead to inconsistent interpretations. Further-
more, for a given coder setup, we analyze the effect of
packet loss on the user-level quality. We then demonstrate
that, when jointly studying the impact of coding bit rate and
packet loss, the reachable quality is upperbound and ex-
hibits one optimal coding rate for a given packet loss ratio.

1 Introduction

The choice of the compression algorithm depends on the
available bandwidth or storage capacity and the features re-
quired by the application. The MPEG-21 standard [1],
a truly integrated audio-visual standard developed by the
International Organization for Standards (ISO), is capable
of compressing NTSC or PAL video into an average bit
rate of 3 to 6 Mbits/s with a quality comparable to ana-
log CATV [2]. However, much work remains to be done to
optimize these audiovisual applications as the users expect
an adequate audiovisual quality at the lowest possible cost.
In the case of video transmission over packet networks,
the User-oriented Quality of Service (U-QoS) results both
from the video encoding quality and the degradations due
to packet loss, delay and delay jitter during the transmis-
sion. The most economic offering can thus only be found
by considering the entire system and not by optimization of
individual system components in isolation [6].

Our work focuses on video quality prediction and con-
trol for high resolution packet video transmitted over lossy
networks.

1MPEG stands for Moving Picture Experts Group

This paper is organized as follows: In Sec. 2, we intro-
duce the MPEG-2 video and system standards. We briefly
describe the impact of data loss on the reconstructed video
sequence. Finally, useful video quality metrics are de-
scribed, among them is the MPQM which is based on a vi-
sion model. The study of the impact of MPEG-2 rate and
data loss on quality is the subject of Sec. 3. Section 4 deals
with the joint impact analysis of both MPEG-2 rate and
data loss on video quality. Concluding remarks are given
in Sec. 5.

2 MPEG-2 over Packet Networks

2.1 MPEG-2 Backgrounder

Figure 1. MPEG-2 video structure.

An MPEG-2 video stream is hierarchically structured as
illustrated in Fig. 1. The stream consists of a sequence com-
posed of several pictures. The MPEG-2 video standard de-
fines three different types of pictures : intra-coded (I-), pre-



dicted (P-) and bidirectional (B-) pictures. The use of these
three picture types allows MPEG-2 to be robust (I-pictures
provide error propagation reset points) and efficient (B- and
P-pictures allow a good overall compression ratio). Each
picture is composed of slices which are, by definition, a
series of macroblocks. Each macroblock (16 � 16 pixels)
contains 4 blocks (8 � 8 pixels) of luminance and 2, 4 or
8 blocks of chrominance depending on the chroma format.
Motion estimation is performed on macroblocks while the
DCT 2 is calculated on blocks. The resulting DCT coeffi-
cients are quantized and variable length coded. The quan-
tizer comes from the multiplication of a Quantizer Scale,
MQUANT, and the corresponding element of a Quantizer
Matrix. In general, the higher the MQUANT value, the
lower the bit rate but also the lower the quality (well-known
from the rate-distorsion theory).

Before being transmitted, a video stream goes through
the MPEG-2 Transport Stream (TS) layer. Basically, the
stream is first segmented into variable-length Packetized El-
ementary Stream packets and then subdivided into fixed-
length TS packets. It is worth noting that a non-encoded
header (i.e., syntactic information) is inserted before each
of the following information elements: sequence, Group of
Pictures (GoP), picture, slice, TS and PES. In general, when
a header is damaged, the underlying information is lost.

2.2 MPEG-2 Sensitivity to Data Loss

In an MPEG-2 video stream, data loss reduces qual-
ity depending strongly on the type of the lost information.
Losses of syntactic data, such as headers and system in-
formation, affect the quality differently than losses of se-
mantic data such as pure video information (e.g., motion
vectors, DCT coefficients, etc.). Furthermore, the quality
reduction depends on the location of the lost semantic data
due, not only to the predictive structure of MPEG-2 video
coded streams, but also to the visual relevance of the data.

Figure 2 illustrates how network losses map onto visual
information losses in different types of pictures. Data loss
spreads within a single picture up to the next resynchroniza-
tion point (e.g., picture or slice headers) mainly due to the
use of differential coding, run-length coding and variable
length coding. This is referred to as spatial propagation and
may damage any type of picture. When loss occurs in a refe-
rence picture (intra-coded or predictive frame), the damaged
macroblocks will affect the non intra-coded macroblocks
in subsequent frame(s), which reference the errored macro-
blocks. This is known as temporal propagation and is due
to inter-frame predictions.

However, the error visibility may be dramatically re-
duced by means of error concealment techniques. These
error concealment algorithms include, for example, spatial

2DCT stands for Discrete Cosine Transform
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Figure 2. Data loss propagation in MPEG-2
video streams.

interpolation, temporal interpolation and early resynchro-
nization techniques. The MPEG-2 standard proposes an
elementary error concealment algorithm based on motion
compensated techniques. Mainly, it estimates the motion
vectors for the lost macroblock by using the motion vec-
tors of neighbouring macroblocks in the affected picture
(provided these have not also been lost). This improves
the concealment in moving picture areas. However, there
is an obvious problem with errors in macroblocks whose
neighbouring macroblocks are intra-coded, because there
are ordinarily no motion vectors associated with them. To
circumvent this problem, the encoding process can be ex-
tended to include motion vectors for intra macroblocks3.

Error concealment techniques may, in general, efficiently
decrease the sensitivity to data loss. However, none of these
techniques is perfect. Data loss may still involve annoying
degradation in the decoded video.

2.3 Video Quality Metrics

Traditionally, the quality metric used for audiovisual sig-
nals is the Peak Signal to Noise Ratio (PSNR). However,
many works have shown that such a metric was poorly cor-
related with human perception. Indeed, the PSNR metric
does not take the visual masking phenomenon into con-
sideration. In other words, every single errored pixel con-
tributes to the decrease of the PSNR, even if this error is not
perceived. Hence, recent research has addressed the issue
of video quality assessment by means of human correlated
metrics.

Several studies have shown that a correct estimation of
subjective quality has to incorporate some modeling of the

3Some MPEG-2 encoder chips automatically produce concealment mo-
tion vectors for all intra-coded macroblocks.
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Figure 3. Moving Pictures Quality Metric (MPQM) block diagram

Human Visual System [4]. A spatio-temporal model of hu-
man vision has been developed for the assessment of video
coding quality [10, 11]. It was then used to build a com-
putational quality metric for moving pictures [11] which
proved to behave consistently with human judgments. Ba-
sically, the metric, termed Moving Pictures Quality Metric
(MPQM), first decomposes an original sequence and a dis-
torted version of it into perceptual channels. A channel-
based distortion measure is then computed, accounting for
contrast sensitivity and masking. Finally, the data is pooled
over all the channels to compute the quality rating which is
then scaled from 1 to 5 [8] (see Fig. 3). This quality scale
is used for subjective testing in the engineering community
(see Table 1).

Rating Impairment Quality

5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

Table 1. Quality scale that is generally used
for subjective testing in the engineering com-
munity

3 Impact of MPEG-2 Rate and Data Loss on
Quality

In this section, we first describe the experimental setup
used throughout this work. We then study how the video
quality behaves according to the quantizer scale factor
(MQUANT) in an MPEG-2 OL-VBR4 encoding scheme.
We also analyze how the average encoding bit rate is af-
fected by this MQUANT. We then derive a mathematical
relation modeling the impact of the average variable rate on
the video encoding quality. Finally, we study how the video

4OL-VBR stands for Open-Loop Variable Bit Rate (constant quantizer
scale over the whole sequence).

quality decreases when the data loss ratio is increased, for a
fixed average encoding bit rate.

3.1 Experimental setup

The experimental testbed is composed of four parts (see
Fig. 4):

� An MPEG-2 software encoder, which is composed
of an open-loop VBR TM5 video encoder [3] and a
transport stream encoder. Four 100 frame-long se-
quences conforming to the ITU-T 601 format were
used (i.e., Football, News, Ski and Barcelona). All
these sequences are very different in terms of spatial
and temporal complexities. They were encoded, as
interlaced video, with a structure of 12 images per
GOP and 2 B-pictures between every reference pic-
ture in an OL-VBR mode. The following MQUANTs
were used: 6, 10, 16, 20, 28, 32, 36, 40 and 48.
Motion vectors were generated for all intra-coded
macroblocks. It is to be noted that the OL-VBR en-
coding quality is not affected at all when introduc-
ing these extra motion vectors. Before being trans-
mitted, each MPEG-2 video bitstream was encapsu-
lated into 18800-bytes length Packetized Elementary
Stream (PES) packets and divided into fixed length
Transport Stream (TS) packets by the MPEG-2 sys-
tem encoder.

� A model-based data loss generator was used to simu-
late packet network losses. For this purpose, we used
a two-state Markovian model (Gilbert model [5], see
Fig. 5).

0
1-q

1

p

q

1-p

Figure 5. Two-State Makov Chain: Gilbert
Model.
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States 0 and 1 respectively correspond to a correct
and an incorrect packet reception. The transition rates
between the states control the lengths of the bursts of
errors. Hence, there are three parameters to be con-
trolled: the packet loss size (PLS), the packet loss ra-
tio (PLR = p

p+q
) and the average length of a burst of

errors (ABL = 1

q
). In our simulations, we imposed

a non-bursty (ABL = 1) TS packets (PLS = 188
bytes) loss process and made the packet loss ratio
vary between10�2 and10�7.

� Video quality was evaluated by the MPQM tool (see
Sec. 2.3).

� The last part is an MPEG-2 software decoder con-
stituted by both a TS decoder and a video decoder.
The video decoder provides the motion compensated
concealment technique briefly explained in Sec 2.2..
This technique was chosen for different reasons. The
first is to be consistent with real implementations.
The second is to be able to perform the percep-
tual measurements. Indeed, the vision model cur-
rently developed and the derived metrics have been
tested for errors below what is called thesuprathres-
hold 5. The problem is that, in general, the degrada-
tions due to data losses generate highly visible arte-
facts (i.e., holes) in the sequence and these errors are
all above this suprathreshold. By using concealment
techniques, most of the artifacts may be considered
as being below the suprathreshold of vision, making
the perceptual measure accurate.

5Two to three times above the threshold of vision which corresponds to
the threshold of visibility of the noise

3.2 MPEG-2 VBR Encoding Impact on Video
Quality

First, we study how the OL-VBR encoding process in-
fluences video quality. Figures 6 and 7 show how the qual-
ity is affected by the MQUANT parameter using, respec-
tively, the PSNR metric and MPQM tool to measure it.
While the PSNR versus MQUANT curve may be repre-
sented by a decreasing exponential [9], it is to be noted
that the MPQM metric exhibits a linear relationship with
MQUANT. We verified this important behaviour for the
four sequences constituting our testbed. The same charac-
teristic has recently been observed through user’s subjec-
tive evaluation [7]. Computer simulation results as well as
the corresponding fits are represented on Fig. 7 for both the
”Barcelona” and ”News” sequences. The encoding quality
is approximated by a function of the form:

QE = �Q �MQUANT +Q0 (1)

where parameters�Q andQ0 have been obtained by
minimizing the mean square error (see Fig. 7). The slope
�Q is directly related to the complexity of the sequence:
the higher the encoding complexity, the higher the absolute
value of�Q. This remark may be verified on the graph.
The video sequence ”News” is aHead and Shouldertype
of sequence and does not contain any high spatio-temporal
complexities. The absolute value of the slope is thus smaller
than for the “Barcelona” video sequence. The value ofQ0

will always be close to 5 (highest quality).
This linear relation between the video quality and the

quantizer scale factor may have several impacts on the de-
sign of, for instance, perceptual rate controllers or consis-
tent quality regulators.

Now, we have an idea of how the encoding quality
behaves according to the MQUANT. We need then to
study how the average output bit rate if affected by this
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Figure 7. MPQM versus quantizer scale
factor for 2 different scenes. Fit-
ting parameters for Eq.1: News: ( �Q=-
0.025, Q0=5.062), Barcelona: ( �Q=-0.045,
Q0=5.226)

MQUANT. In [9], it was demonstrated that a power func-
tion curve was a good approximation to represent the rela-
tion between the quantizer scale factor and the average bit
rate:

�R = �R �MQUANT��R (2)

in which �R represents the average output bit rate and the
parameters�R and�R are related to the encoding complex-
ity of the scene.

Figure 8 illustrates this behaviour very well. The pa-
rameters�R and�R have been obtained by minimizing the
mean square error.

Finally, by combining equations (1) and (2), we derive a
model for describing how the video quality behaves accord-
ing to the average encoding bit rate:

QE = �Q �

� �R

�R

�
�

1

�R

+Q0 (3)

As stated before, the three main parameters�Q, �R and
�R are somehow related to the spatio-temporal complexity
of the sequence (Q0 will always be around5:0). However,
in this work, we did not investigate this relation any further.
This work would not be trivial, as it involves not only en-
coding complexities but also visual masking phenomenons.
We are currently investigating such an extension.

Computer simulation results and the corresponding fit-
ting curve using the equation herebefore are represented in

Fig. 9.
An important result that can be extracted from the graph

is that the perceptual quality saturates at high bit rates. In-
creasing the bit rate may thus result, at some point, in a
waste of bandwidth since the end-user does not perceive an
improvement in quality after a certain bit rate. However,
such saturation of quality is not well captured by the PSNR.

3.3 Data Loss Impact on Video Quality

Up to this point, we did not consider any data loss in the
video stream. Figure 10 illustrates how the video quality
is affected by uniformly distributing TS packet losses over
MPEG-2 transport streams. It is shown that, on a semi-
logarithmic scale and for a given MQUANT (average bit
rate), first the video quality remains constant with the PLR.
This constant value corresponds to the encoding quality.
Then, beyond a certain PLR, the perceptual quality quickly
drops.

The higher the MQUANT value, the higher the PLR after
which the quality drops. Indeed, since the PLR is equal to
the ratio between the packet loss rate (number of lost pack-
ets per second) and the packet rate, then the lower the bit
rate (the higher the MQUANT), the lower the packet loss
rate for a fixed PLR. Also, the lower the packet loss rate,
the lower the number of lost packets per frame on average.
Therefore, the higher the MQUANT, the higher the PLR for
an equivalent perceived degradation (see Fig. 10).
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Figure 8. Average output encoding bit rate
versus quantizer scale factor (MQUANT) for
Barcelona. Fitting parameters for Eq.2:
(�R=124.762, �R=1.116)

Hence, the relation between video quality and PLR may
be represented by a straight line on a linear scale:

Q = QE + ��L � PLR; (4)

whereQE corresponds to the encoding quality (given by
Eq. 3) and��L depends on both the complexity of the se-
quence and the average bit rate. In other words, for a given
sequence and a fixed MQUANT, the video quality, averaged
over the whole sequence, linearly decreases with the PLR.

This relation still holds if we multiply the PLR by a con-
stant. We observed that, for a givenMQUANT , the rela-
tion between the end-to-end video quality,Q, and the prod-
uct �R�PLR could be well approximated by a straight line
of slope�L. Therefore, Eq. 4 becomes:

Q = QE + �L � ( �R � PLR); (5)

where�L is almost independent of theMQUANT es-
pecially for low to medium bit rates.

4 Joint Impact of MPEG-2 Rate and Data
Loss on Quality

In this section, we demonstrate why a joint analysis of
the impact of both the MPEG-2 encoding bit rate and the
data loss ratio on the video quality is the only way to get
meaningful conclusions. We explain, for example, why the
video quality may decrease when the encoding bit rate is
increased in an error-prone environement.
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Figure 9. MPQM video quality versus average
output encoding bit rate for the Barcelona se-
quence. Fitting parameters for Eq. 3: ( �Q=-
0.045, Q0=5.225, �R=124.761, �R=1.116)

4.1 Joint Impact Analysis

As stated at the end of the previous section, the PLR and
the encoding bit rate (packet rate) are intimately related to
each other in regards to their impact on video quality. For
example, the higher the bit rate, the higher the encoding
quality (up to saturation) but the lower the PLR after which
the video quality quickly drops, and conversely. Therefore,
the relation between quality and encoding bit rate for a non-
zero PLR should somehow exhibit an optimum value. This
behaviour is illustrated on Fig. 11. We indeed see that the
video quality first increases (encoding quality) with the av-
erage bit rate and then decreases after around 4 MBits/s for
the ”Barcelona sequence” (data loss). This optimal average
bit rate directly depends on the sequence type. We observed
that it was fairly independent of the PLR though.

Such a result is crucial for the design of network-aware
rate controllers, efficient error concealment algorithms, etc.

4.2 Tri-Dimensional Representation

The purpose of this subsection is to put all the results
together and represent them by a single graph. Thus, by
putting together Eq. 3 and Eq. 5, we obtain a model of the
end-to-end video qualityQ:

Q = �Q �

� �R

�R

�
�

1

�R

+Q0 + �L � ( �R� PLR); (6)

in which the two first terms of the sum represent the en-
coding quality (see Eq. 3).
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Figure 10. MPQM versus PLR (ALB=1,
PLS=188) for MQUANTs= f28, 32g using the
Barcelona sequence. Fitting parameters for
Eq.4: MQUANT=28, (QE=4.352, ��L=-168.162)
and for MQUANT=32, ( QE=3.934, ��L=-98.351).
Sequence: Barcelona

We then performed a complete set of measurements in
order to verify this relation. The same simulation setup
as the one presented in the previous section has been used.
Figure 12 presents the resulting surface for the ”Barcelona”
sequence while Fig. 13 shows its corresponding fit using
relation (6).

Several results may be extracted from these graphs. Most
of these results have already been discussed throughout this
paper. In general, when considering video transmission
over lossy networks, not only it is bandwidth consuming to
increase the encoding bit rate above a certain threshold due
to saturation of quality (which varies according to the scene
complexity), it may also be quality consuming. In other
words, when the user-oriented QoS is not high enough, an
increase of the encoding bit rate at a fixed PLR may even
degrade the quality, depending on the position of the work-
ing point on the 3D graph presented herebefore. There is an
optimal bit rate to be determined that maximizes the end-
user perception of the service under certain given network
conditions (i.e., network impairments).

Such a conclusion is general enough to be applied to a
different encoding system.

5 Conclusion and Future Works

The combined effect of the coding bitrate and the net-
work impairements on the user-perceived quality is still not
well understood. However these results are needed for the
design and deployment of packet video services. One of the
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Figure 11. MPQM versus average encoding
bit rate for PLR = 5� 10�3 for the Barcelona
sequence.

common misleading intuitions is that increasing the coder
bit rate enhances image quality. In this paper we have
shown that this intuition is proper to a lossless communica-
tion channel and that the quality-rate function is no longer a
strictly increasing function when video packets are subject
to loss.

The major conclusion is that image quality cannot be im-
proved by acting on the coding bit rate only: increasing the
bit rate above a certain threshold results in quality degra-
dations. For a given packet loss ratio, there is a quality-
optimal coding rate that has to be found. Although the
relationship between coding bit rate, packet loss ratio and
user-level quality is intrinsically complex, it can be char-
acterized by a simple expression and parameters set. These
parameters seem to depend on global properties of the video
sequence (e.g., spatio-temporal complexities). Such param-
eters have to be predicted when video is coded and transmit-
ted in real-time over lossy networks. Therefore, this work
is being extended to on-line prediction of the 3D quality
graph in the context of MPEG-2, as well as other emerging
encoding standards.
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