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Abstract
We present the design, implementation and evaluation of
an open programmable mobile network based on
distributed object technology called mobiware that
dynamically exploits the intrinsic scalable properties of
adaptive mobile applications. While a number of adaptive
mobile systems have been proposed in the literature few
experimental systems exist today to assess the viability of
the adaptive approach. We argue that existing mobile
systems (e.g., mobile IP, mobile ATM and third
generation cellular systems) lack the intrinsic
architectural flexibility to deal with the complexity of
supporting adaptive mobile applications in wireless and
mobile environments. We believe that there is a need to
develop alternative network architectures from the
existing ones to deal with the tremendous demands placed
on underlying mobile signaling, adaptation management
and wireless transport middleware. Mobiware represents
one example of such an alternative approach. Software-
intensive (comet.columbia.edu/wireless/software/mobiware),
mobiware provides an open programmable approach to
dealing with the complexity of supporting adaptive mobile
applications in time-varying mobile and wireless
networks.

1. Introduction

The phenomenal growth in cellular telephony over the
past several years has demonstrated the value people
place on mobile voice communications.  The goal of
next-generation wireless systems is to enable mobile
users to access, manipulate and distribute voice, video
and data anywhere anytime. As the demand for mobile
multimedia services grows, high-speed wireless
extensions to existing broadband and Internet
technologies will be required to support the seamless
delivery of voice, video and data to mobile terminals with
sustained high quality. New wireless services will include
Internet access to interactive multimedia, video
conferencing and real-time data as well as traditional
services such as voice, email and web access. The
wireless and mobile environment presents a number of

technical challenges to this vision. First, physical layer
impairments contribute toward time-varying error
characteristics and time-varying channel capacity as
observed by mobile devices. We describe the quality
index maintained across the wireless channel as wireless-
QOS as illustrated in Figure 3. Second, user mobility can
trigger rapid degradation in the quality of the delivered
signal.  This can lead to handoff dropping in broadband
cellular networks and loss of service in mobile ad hoc
networks. As a result, mobile applications can experience
unwarranted delays, packet losses or loss of service. We
describe the quality index maintained during mobility as
mobile-QOS as illustrated in Figure 3. There is growing
consensus that adaptive techniques [Katz,94], [Lee,95]
[Lu,97] and [Naghshineh,97] present the only viable
approach to countering time varying quality of service
impairments in wireless and mobile network
environments. However, providing system-wide (i.e.,
end-system and network) adaptive quality of service
support is complex to realize and not well understood
[Campbell,97b].

To address these challenges, we have built an open
[Lazar,97] and active [Tennenhouse,97] programmable
mobile network [Campbell,96] that is controlled by a
software middleware platform called mobiware
[Mobiware,98].  Mobiware extends earlier work by the
COMET group on the xbind broadband kernel [xbind,96]
to the mobile and wireless domain. By open, we mean
that there is a need to “open up” hardware devices (e.g.,
mobile devices, access points and mobile-capable
switches and routers) for implementation of new mobile
signaling, transport and adaptive quality of service
management algorithms. At the lowest level of
programmability, mobiware abstracts hardware devices
and represents them as distributed computing objects.
These objects (e.g., an access point object) can be
programmed via a set of open programmable network
interfaces to support adaptive quality of service
assurances. By programmable, we mean that these
programmable network interfaces are high-level enough
to allow new services to be built using distributed object



computing technology, e.g., CORBA, DCOM and Java.
By active, we mean that adaptive quality of service
algorithms can be represented as active transport objects
and injected on-the-fly into mobile devices, access points
and mobile capable network switches/routers to provide
value-added quality of service support when and where
needed.

In this paper, we present an overview of mobiware
followed by the design, implementation and evaluation of
a programmable mobile network. The structure of the
paper is as follows. Section 2 describes an adaptive-QOS
API and service model, the mobiware architecture and the
network model. Following this, Section 3 presents the
design and implementation details of mobiware’s
programmable mobile network. This is followed in
Section 4 by an evaluation of the system in an
experimental setting. Finally, in Section 5 we present
some concluding remarks.

2. Mobiware

Mobile applications need to be capable of responding
to time-varying wireless-QOS and mobile-QOS
conditions. Wireless transport systems should be capable
of manipulating content in response to fluctuating quality
of service conditions. Medium access controllers must be
capable of supporting adaptive quality of service
assurances to the mobile devices. Mobiware is well suited
toward managing the evolving service demands of
adaptive mobile applications and dealing with the
inherent complexity of delivering audio, video and real-
time services to mobile devices. Based on an adaptive
quality of service API, mobiware consists of a set of
controllers that interact with transport, network and
medium access controller distributed objects that
maintain application-specific adaptive quality of service
needs.

2.1 The Adaptive-QOS API and Service Model

By trading off temporal and spatial quality with
available bandwidth, mobile applications can be made to
adapt to time varying conditions with minimal perceptual
distortion. In [Binachi,98a], we introduced an adaptive-
QOS API and service model specifically designed to
quantitatively address the wireless-QOS and mobile-QOS
needs of adaptive mobile applications. Mobile
applications use an adaptive-QOS API at the transport
layer specifying:
• a utility function, which captures the adaptive nature

over which an application can successfully adapt to
available bandwidth in terms of a  utility curve that
represents the range of observed quality to
bandwidth. The observed quality index refers to the
level of satisfaction perceived by an application at
any moment as illustrated in Figure 1; and

• an adaptation policy, which captures the adaptive
nature of mobile applications in terms of a set of
adaptation policies (viz. fast, slow, after handoff,
never). These policies allow the application to control
how it moves along its utility curve as resource
availability fluctuates, e.g., scale-up only after
handoff, fast adaptation and slow adaptation.

The utility function allows utility-fair bandwidth
allocation algorithms [Bianch,98a] to derive explicit
optimization rules under heterogeneous application
adaptation behavior. Here bandwidth is allocated fairly to
all the flows so that the same utility value is achieved at
an access point. For full details of the utility-fair
bandwidth allocation algorithm see [Bianchi,98a]. The
utility function alone, however, is not capable of
capturing application specific adaptation dynamics.
Rather, a simple set of adaptation policies is used to
capture how an application wishes to respond to
instantaneous bandwidth availability.

A mobile multimedia application’s range of
perceptible quality is strongly related to how and when it
responds to resource changes. Frequent oscillation
between what may be considered optimal and minimum
utility or even the frequent small change around an
average application quality may be annoying to many
applications. Some applications may wish to limit the
frequency of adaptation to change, e.g., multi-resolution
application. In contrast, others may wish to exploit any
opportunity for adaptation, e.g., real-time data
application. By limiting or dampening the response to
change an application attempts to follow trends in
resource availability rather than fluctuations to
instantaneous changes. Such a conservative adaptation
policy may lead to a more stable operating point on an
application’s utility curve. This is in contrast to a policy
that responds to instantaneous fast moving points that
may suit other styles of mobile application. The API
allows the application to specify temporal or event-based
dimension to utility.

Figure 1: Utility functions
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The service model supports the following adaptation
‘menu’ policy options1:
• fast, to instantly move up or down the utility curve

responding instantly to any resources changes;
• slow, to move up or down the utility curve only after

a suitable damping period has passed;
• handoff, to move up or down the utility curve only

after handoff; and
• never, to never move up the utility curve after the

initial bandwidth allocation.
The adaptive-QOS API is supported by mobiware at

the transport and realized at the mobile device and in the
network. This allows the mobile application to specify a
flow’s utility function and adaptation policy, which is
supported by mobiware.

2.2 The Architecture

Mobiware is a software-intensive mobile networking
environment based on distributed object technology. As
illustrated in Figure 2 mobiware promotes the separation
between mobile signaling and adaptation management,
and the transport of media. At the transport layer, an
active wireless transport supports the end-to-end
transmission of audio, video and real-time data services
based on an adaptive-QOS paradigm. The active wireless
transport is an object-based transport that blurs the region
over which traditional transports (e.g., TCP and RTP)
typically operate to include access points and end
systems.. Built on a set of Java classes, the transport
system binds active and static transport objects at mobile
devices and access points to provide end-to-end transport
adaptation services. Static transport objects include
segmentation and reassemble, rate control, flow control,
playout control, resource control and buffer management
objects. These objects are loaded into the mobile device
as part of the transport service creation process. Active
transport objects are dynamically dispatched to mobile
devices and access points to support valued-added QOS.
Currently, two styles of active transport objects have been
implemented: active media filters [Balachandran,97],
which perform temporal and spatial scaling for multi-
resolution video and audio flows and adaptive FEC filters
[Campbell,97a] which protect content against physical
radio link impairments by matching the level of Reed
Solomon channel coding to match time-varying error
characteristics.

                                                  
1 A generalization of this approach is detailed in [Bianchi,98a].
Adaptive mobile applications supply adaptation handlers, which
implement application-specific adaptation policies supporting more
sophisticated levels of adaptation than the current menu options (e.g.,
fast, handoff) offered in the existing system. Adaptation handlers can
program simple or sophisticated adaptation strategies. Mobiware
exposes a set of low level programming APIs to allow the application to
control its adaptation strategy.

At the network layer, a programmable mobile network
supports the introduction of new mobile adaptive-QOS
services based on the xbind broadband kernel [xbind,96].
The network layer supports switching IP flows over ATM
native transport services.  Architecturally, the network
comprises a set of network objects and adaptation proxies
that operate at the mobile device, access points and at
mobile capable switch/routers. Currently, an adaptive-
QOS network service supports the delivery of multi-
resolution flows having a base layer and one or more
enhancement layers. The base layer provides a foundation
for better resolutions to be delivered through the
reception of enhancement layers based on the availability
of resources in the wireless environment. Three key
network algorithms include: (i) QOS controlled handoff,
which gracefully scales flows (up and down) based on the
semantics of the adaptive-QOS service during handoff
when bandwidth availability varies; (ii) mobile soft-state,
which provides mobile devices with the capability to
respond to changes in wireless-QOS and mobile-QOS;
and (iii) flow bundling, which exploits a common routing
representation for all the flows to and from a mobile
device to speed up handoff. The focus of this paper is the
design and evaluation of the programmable mobile
network described in Sections 3 and 4, respectively.

Figure 2: The mobiware architecture

At the data link layer, a programmable MAC
[Bianchi,98b] combines a set of foundation services to
support more sophisticated adaptive wireless-QOS
services. Foundation services provide sustained rate
services used to support minimum wireless-QOS
assurances, and active and passive adaptive services to
support application specific adaptation policy. The
‘programmable’ nature of the data link service
provisioning over wireless networks provides an
alternative approach to that found in the literature. Rather
than supporting a specified set of ‘hard wired’ MAC
services (e.g., VBR) by means of centralized control
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schemes, it provides a programmable air-interface that
allows new services to be dynamically created and
installed on the fly. This programmable MAC service
support relies on a simple core architecture that pushes
complexity and application specific adaptation decision
making to the mobile device. For full details on the
programmable MAC see [Bianchi,98b]

2.3 The Network Model

Mobiware is a novel software middleware platform
that controls an experimental broadband wireless access
network to a next generation mobile Internet
[Mobicom,97] called mobinet. The network model
comprises a set of mobile devices, wireless access points
and mobile-capable switches/routers providing broadband
cellular and ad hoc communication services to mobile
users. Mobinet is based on ATM switching technology
that supports IP switched flows in the access network.
Mobile devices can be connected to mobinet via
broadband cellular or ad hoc wireless access modes. In
broadband cellular mode, mobile devices receive core
network services via a set of wireless access points. Ad
hoc devices may operate autonomously without the aid of
any fixed infrastructure and core network services or can
connect to the broadband cellular network via multiple ad
hoc hops as illustrated in Figure 3.

Figure 3: mobinet

Providing quality of service assurances in the
broadband cellular networks is difficult. However,
providing quality of service assurances without the aid of
any fixed infrastructure as in the case of ad hoc is more
challenging [Corson,98]. We believe there is a need
understand the level of quality of service that can be
supported at different points of attachment in mobinet,

e.g., at the access point or multiple hops away from the
access point. We observe that quality of service
assurances are likely to diminish as a mobile device
moves away from the core network as illustrated in
Figure 3. Providing seamless quality of service support to
mobile devices on the move (e.g., switching between
broadband cellular and ad hoc modes) underpins
mobiware’s adaptive-QOS design approach2.

3. Programmable Mobile Network

3.1 Programmable Objects

The mobile network comprises a set of programmable
distributed CORBA objects3 that support the delivery of
adaptive-QOS flows to mobile devices over mobinet. The
use of distributed object technology also provides support
for interoperability between mobile devices utilizing
different operating systems and protocol support.
Mobiware objects execute on mobile devices, access
points and mobile capable switch/routers supporting a set
of mobile signaling and quality of service adaptation
algorithms (viz. QOS controlled handoff, flow bundling
and mobile soft state) as illustrated in Figure 3. Objects
combine data structure (defining the object's state) with a
set of methods (defining the object's behavior). Methods
are executable programs associated with objects that
operate on information in an object's data structure.

Per-mobile adaptation proxies support the
communications of flows to/from mobile devices and are
used to support fast and scalable handoff. These include
Routing Anchor Proxies (RAP) objects, which ‘bundle’
(i.e., aggregate) flows to and from mobile devices for fast
handoff [Campbell,97b] and QOS Adaptation Proxies
(QAP) objects, which are used as an integral part of the
mobile soft-state probing mechanism for distributed
resource allocation over the wireless network.

To manage the network states introduced by flow-
oriented communications and, more importantly, to gain
efficiency across a wireless link, mobiware deploys a
number of network objects that can execute on network
nodes or on servers at the edge of the network. The
mobile device object abstracts the operation of mobile
stations and provides APIs for querying beaconing
information, registration with an access point, flow
establishment and handoff. It also includes the
functionality to dynamically control the transport system
at the access points, e.g., to set the media scaling or error

                                                  
2 In this paper we focus on adaptive quality of service support for
broadband cellular communications leaving ad hoc support for future
work [Coroson,98].
3 Mobiware includes active transport objects based on Java classes that
‘plugin’ to the data path at wireless access points to provide value-added
adaptation support. Currently, the active wireless transport supports
active media scaling and adaptive FEC support.
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control level for video flows. The mobile device object
states mainly consist of quality of service specification
(viz. utility function and adaptation policy) for all the
flows directed towards/from the mobile station and end-
point information for all the network nodes between the
source-destination pairs.

Figure 4: CORBA IDL for access point object

An access point object supports APIs for binding to
wireline network objects on behalf of mobile stations,
propagating CORBA calls and for the establishment and
periodic refreshing of local wireless connections for flows
as illustrated in Figure 4. This object plays an important
role in QOS controlled handoff and interacts with the
transport system for the injection of active transport
objects when and where needed. The mobility agent
object provides flow-management, handoff signaling and
mobility management services. It interacts with per-
mobile RAP or QAP state in the switch servers and
supports APIs for retrieving network topology
information from a router object (e.g., location of the
cross over switch) and communicating with each network
node separately. A router object stores end-to-end route
information.

Switch server objects [xbind,96] abstract and represent
physical ATM switch/routers and are fully quality of
service programmable. These objects support APIs for the
reservation and release of namespace (viz. VCI/VPI pairs)
and the allocation of network resources (viz. bandwidth).
State mainly consists of per-flow connection information,
stored in local hash-tables called switch caches. Switch
server objects have been extended to be mobile capable,
i.e., support RAP and QAP functionality.  The General

Switch Management Protocol (GSMP) protocol is used at
the access points and switch/routers for accessing the
switch tables.

3.2 QOS-controlled handoff

QOS controlled handoff gracefully scales flows (up
and down) during handoff based on the semantics of the
adaptive-QOS API described in Section 2.1. By scaling
flows during periods of resource contention (e.g., during
handoff), mobiware improves the wireless resource
utilization and reduces the handoff dropping probability.
While the style of handoff is entirely programmable, the
current implementation style is mobile-initiated, forward
handoff with soft-handoff on the down-link and hard-
handoff on the uplink. By mobile-initiated, we mean that
after a suitable dwell time the mobile device initiates a
handoff by first registering with the forward/new access
point. By soft-handoff, we mean that during handoff the
mobile device simultaneously receives flows from the old
and new access point on the down-link. In contrast,
uplink flows use a ‘break and make’ approach between
the old and new access points. During handoff,
registration to the new access point, rerouting of flows
and quality of service adaptation is accomplished by
signaling objects and associated APIs outlined in Section
3.1. Signaling APIs are programmable4 allowing various
styles of handoff to be tailored toward particular radio
environments.

QOS controlled handoff object-interaction is
illustrated in Figure 5. Mobile device objects periodically
‘hunt’ for beacon signals from neighboring access points.
Beacons are fully programmable in mobiware and carry
low-level signal information in addition to the current
bandwidth availability at the sending access point. The
mobile devices’ hunting algorithm periodically compares
all beacons received over the current hunt period and
cumulatively over multiple hunt periods. If the wireless-
QOS5 indicated in the beacon from the current access
point falls below a pre-determined threshold the hunt
algorithm selects a new access point for handoff. Handoff
is initiated after a suitable dwell period after which the
mobile device registers with the new access point starting
the handoff process as indicated by (2) (3) in Figure 5.
                                                  
4 Note that the object oriented aspect of mobiware signaling makes it
easy to rapidly ‘program’ different styles of handoff algorithm, e.g., the
object APIs can support network initiated handoff that are hard in
nature.
5 The beacon informs the mobile device of the channel conditions upon
the reception of each packet arrival reporting the signal level, silence
level signal quality and antenna selected. The signal and silence level
area derived from the receiver’s automatic gain control settings. Beacon
messages are augmented with a 16-bit field that indicates the available
resources at the access point. The mobile device can use this to scale
down request for bandwidth resources during handoff given that the
bottleneck node is typically the access point.  Our radios are based on
WaveLAN operating in the 2.4-2.8 GHz ISM band, which we have low
level access to for programming the beacon.

interface AccessPoint : NodeServer {

  // flow setup from the current access point to
  // the network, called by the mobile device object
  void setupFlow(in long fbi,
      inout QOSSpecification qosSpec,
      inout FlowInfo flowinfo, in string<40> srcname,
      inout EndPoint peerEp,
      inout EndPoint RAP_fix, inout EndPoint RAP_mobile,
      inout EndPoint AP_fix, inout EndPoint AP_mobile,
      inout EndPointId airIP, inout double msr_time)
    raises(Reject);

  // handoff flow bundle for a specific mobile device
  void handoffFlowBundle(in long fbi,  inout QOSSpecList
      qosSpec[2],  inout FlowInfoList flowinfo[2],
      inout SourceList srcname[2], inout EndPointList
      RAP_fix[2], inout EndPointList RAP_mobile[2],
      inout EndPointList AP_fix[2], inout EndPointList
      AP_mobile[2], inout EndPointIDList airIP[2],
      inout double msr_time)
    raises(Reject);

  // refresh mobile soft-state for flow bundle
  // through the current access point to the network
  void refreshFlowBundle(in long fbi,
    inout EndPointList RAP_mobile[2],
    inout EndPointList AP_fix[2],
    inout EndPointList AP_mobile[2],
    inout double ntw_msr_time)
   raises(Reject);
};



The device registration procedure triggers the new
access point object to bind to a mobility agent object (4).
The mobility agent caches bindings to the per-mobile
adaptation proxies that are implemented as part of switch
servers. Mobility agents and proxies can run anywhere in
the mobinet, i.e., mobility agents can operate at fixed
edge device, mobile device or on the switches. Mobility
agents are the main controllers for managing handoff in
mobiware. Currently, mobiware uses a single mobility
agent to manage handoff for the complete testbed.
Mobility management is a fully distributed algorithm that
includes one or more mobility agents for scalability.
When the mobile device initiates a handoff (5) it passes a
unique mobile device identifier called the flow bundle
identifier (FBI) to the access point that allows mobiware
to identify the mobile device’s flow bundle in the wireless
access network.

Figure 5: QOS-controlled handoff object interaction

Mobility agents are responsible for re-routing a mobile
device’s flow bundle from an old access point to a new
one as illustrated in Figure 3. This entails the mobility
agent invoking the route object to determine the location
of the cross over switch as illustrated in Figure 3.  Switch
server objects are used to re-establish new flow state at all
switches between the cross over switch and the new
access point. The re-routing phase includes name space
reservation (viz. outgoing VCI/VPI) and bandwidth value
at each network switch and the new access point. The
final process of re-routing a flow bundle through a switch
includes the use of GSMP (9) (9') (12) to set up the
switch table and reserve resources.  However, GSMP
does not support the concept of flow bundling. While the
mobile agent informs the switch server objects to
establish state for a complete flow bundle, the switch
server interacts with GSMP on a flow by flow basis. In
the evaluation section we describe enhancements to
GSMP to support flow bundling. The mobility agents
interact with mobile capable switch servers and the new
access point in parallel resulting in a speed up of the re-
routing phase of the handoff algorithm over conventional
hop-by-hop signaling. After the re-routing of the flow
bundle is complete the mobile agent informs the new

access point of the negotiated quality of service and flow
bundle VCI/VPI mappings.  The new access point
interacts with the active wireless transport to provide
active media filters based on the available bandwidth at
the interface.

To keep the name space binding between the mobile
device and access points constant with mobility we have
implemented the notion of virtual wireless ports. As
mobile devices connect to different access points their
VPI/VCIs mapping remain constant. The flow bundle to
VPI/VCI bundle is resolved by a virtual wireless port,
which is dynamically allocated by the new access point
during handoff. This approach minimizes the impact of
re-negotiation in comparison to a full name space re-
negotiation, which would be disruptive during handoff.

3.3 Flow bundling

QOS controlled handoff and mobile soft state exploit
flow bundling to speed up handoff and minimize the
signaling overhead associated with maintaining the
network state. Flow bundling [Porter,95] provides a
common routing representation for all the flows to and
from a mobile device as illustrated in Figure 3. This is
similar to the virtual path concept in ATM networks or
tunneling in IP networks. Flow bundling is a general
method for encapsulating and routing. For example, flow
bundles can carry both VPs and VCs in mobiware. Flow
bundling is motivated by the need to reduce the
complexity of re-routing multiple independent flows to
and from mobile devices during handoff. By aggregating
flows in this manner we can speed up handoff, simplify
mobile soft-state probing and minimize signaling
overhead. Using flow bundling, QOS controlled handoff
simply discovers a single crossover switch then re-routes
all flows to the new access point in a single object-level
operation.

During handoff the flow bundle object interaction is as
follows. The mobile device object invokes the access
point’s handoffSetup() method once for the flow bundle
minimizing the signaling overhead at the air-interface.
Mobiware supports the option of enabling or disabling
bundling when flows are established. Note that when flow
bundling is disabled the mobile device, access point,
mobility agent objects treat each flow independently
during handoff. As discussed in the evaluation this
increases the signaling overhead and the handoff latency.
During each invocation a separate cross over switch needs
to be located, using a shortest path algorithm and
individual flows need to be re-routed and signaled
independently. The mobile agent interacts with the switch
servers to re-establish flows and update switch tables for
all switches between the cross over switch and the mobile
devices. GSMP is used to update the switch table at each
traversed switch. In order to support the atomic re-routing
of flow bundles we have enhanced the GSMP protocol.
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Flow aggregation at the switch control level has been
implemented as a modification to the GSMP invocation
mechanism. Two enhancements have been considered in
Section 4. The first has no impact the current GSMP
client server interaction. The mobile agent simply invokes
the GSMP client for each flow without waiting for
acknowledgement from each GSMP command. This
results in the switch server sending a burst of GSMP
setup messages to the switch then waiting for
acknowledgements. The second enhancement augments
the GSMP setup message to allow up to 256 VCI pairs to
be passed across the interface in one client-server
interaction. This allows the switch server to setup the
switch table for a flow bundle in one operation. We
discuss the performance benefits of flow bundling in
Section 4.

3.4 Mobile soft-state

During handoff a flow bundle must be re-routed to a
new access point, resources need to be reserved, and the
old flow bundle state between the old access point and the
cross over switch removed. Mobile devices resident in
cells also need to scale flows in accordance with channel
conditions, whether new flows are established or released,
and when new mobile devices enter and leave cells.
Mobile soft-state provides quality of service adaptation
support to cater to a number of these conditions. Mobile
soft-state results in the periodic establishment of
bandwidth and name space resources for flow bundles
between a mobile device and a per-mobile QOS
adaptation proxy (QAP).  Mobiware supports the idea of
soft-state [Campbell,97] in the mobinet to refresh the
network state. Periodically refresh messages sent by
mobile devices are on a flow bundle basis not a per-flow
basis. During the refresh phase mobile devices respond to
any changes in allocated bandwidth (based on utility
functions) to the flow bundle.

In [Campbell,97] we argue that a soft-state approach is
well suited to supporting QOS adaptation in mobile
networks. Mobile soft state supports a distributed probing
mechanism based on flow bundles allowing mobile
devices to compete fairly for bandwidth in a completely
decentralized and scalable manner. During handoff
mobile devices do not explicitly remove the old flow
bundle-state between the old access point and the cross
over switch. In this case, mobile soft-state timers located
at the switches and old access point timeout and release
resources automatically. Mobile devices resident at the
old access point compete for these available resources
thereby improving their utility.

Mobile devices periodically probe the path between
the mobile device and the per-mobile QAP and contend
for resources. Note, that per-mobile QAPs can be located
at an access point or any mobile switch/router between
the mobile and its corresponding routing anchor proxy

(RAP). If the QAP is located at the access point then
mobile soft state is only active over the air-interface; that
is, between the mobile device and access point.  The
position and configuration of where these proxies reside
is programmable. In many cases, the access point is the
most suitable location because radio resources are
generally the bottleneck in broadband wireless or wireless
LAN systems.

Mobile devices independently probe the wireless
access network.  The probe includes a list of flow
requirements for the complete flow bundle, which
includes the utility function for each flow. In the current
system, we have implemented the discretely-adaptive
flows (see Figure 1) where a base layer (BL) and one or
more enhancement layers (viz. E1, E2) would be signaled
in the probe message. The probe interacts with the access
point and all mobile capable switches/routers between the
mobile device and its QAP. The response is returned to
the mobile device indicating the available bandwidth
reserved for each flow in the bundle over the next time
interval. This time interval is called the refresh interval. If
a probe message is received along the path before the
refresh interval expires then the reservation is ‘refreshed’
based on available resources. In contrast, if no refresh
message is received then the timer expires and the
resources deallocated and state removed. This
reservation-adaptation style probing and response is
implemented at the object level as a set of
refreshFlowBundle() method invocations (2) (3) (3’). The
mobile device issues a refresh to the mobility agent object
which then refreshes all switches and the current access
point on the path between the mobile and QAP (see
Figure 6).

Figure 6: Mobile soft-state object interaction

4 Evaluation

To evaluate the programmable mobile network
performance, we built the mobinet testbed, developed a
wireless network management tool and designed a set of
experiments to analyze QOS controlled handoff, flow
bundling, mobile soft-state and QOS adaptation
algorithms. Through the course of measurement,
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evaluation and re-design we managed to substantially
improve upon our initial baseline design.

4.1 The Experimental Environment

At the network level, mobinet provides wireless access
to the Internet and comprises four ATM switches6 (viz.
ATML Virata, Fore ASX/100, NEC model 5, Scorpio
Stinger switches) and four wireless access points as
illustrated in Figure 3. The access points run the
mobiware code and are based on a set of multi-homed
200 MHz pentium PCs that provide radio access to a
wireline switched IP/ATM sub-network. High
performance notebooks (viz. IBM, Gateway and NEC)
provide support to mobile applications and mobile access
to the access network. Wireline ATM links operate OC-3
rates between the switches and fixed end-systems, and at
25 Mbps between the switches and access points.
Currently, the air-interface is based on WaveLAN
operating at 2 Mbps in the 2.5 GHz band. A future
version of the mobinet will operate at 25 Mbps spectrum
in the 5GHz  NII/SUPERNet unlicensed band. Mobile
capable switches, access points and mobile devices are
abstracted as programmable CORBA objects. Mobiware
requires IIOP CORBA for mobile signaling and
adaptation management. For the results provided in this
paper the mobile devices and access points use IONA’s
Orbix CORBA running under Windows NT, and the
mobile capable switches/routers use IONA’s Orbix
running under UNIX or proprietary operating systems.

We have designed and implemented mobiman a Java-
based management tool for wireless networks. Mobiman
drives experiments, displays recorded statistics, and
provides network management capability to view the
network and inspect the state of any mobile device. To
measure the performance of the programmable mobile
network we inserted measurement checkpoints
throughout the code and recorded performance statistics
during the experiments. Mobiman, which runs on any
fixed or mobile device, can remotely target any mobile
device operating in mobinet displaying mobile device
object statistics. It can setup flows, turn on/off flow
bundling and mobile soft state, interact with media
scaling and adaptive FEC control at the transport level,
and force handoff operations to occur. Measured
information displayed by mobiman comprises flow

                                                  
6 We modify the concept of switchlets [Merwe,97] to provide an
extended network for mobiware evaluation. Switchlets allows multiple
virtual network elements to be operational within the same physical
nodes. Three ATM switches (ATML 1, 2, and 3 as shown in Figure 3) in
our network are switchlets physically co-located at the same physical
switch. For example, packets traversing three switchets located at the
one physical switch travel across the physical switch three times via
cables that directly connect one port to another in the same switch. Each
switchlet corresponds to a different CORBA switch server object with
different name space, and manages its own resources and controls
connections independently of others.

information, quality of services measurements (e.g.,
signal level, silence level signal quality, and access point
bandwidth availability) and experimental checkpoint
measurements. Mobiman displays measured information,
wireless network topology and mobile device location in
a control window as illustrated in Figure 7. When a
mobile device is selected by mobiman a control window
indicates the state of the mobile, e.g., three flows are
delivered to ‘mobile-air1’. In this example, the mobile-air
1 is running mobiman and the three flows correspond to
the playout of the “True Lies” video clip and two low-
resolution text windows. A flow setup panel appears in
the top-left corner of Figure 7.

Figure 7: mobiman: a Java-based management tool
for wireless networks

Microsoft's Active Movie is used for the reception,
decoding and rendering of digital video. It provides a
software tool capable of controlling and processing
streams of multimedia data. Active movie uses modular
components called filters and filter graphs. Typically, a
filter graph consists of a source filter that provides the
system with multimedia data, a transform filter that
performs data decompression and a rendering filter.
Active Movie's filter graph has been enhanced with an
appropriate mobiware static transport object to perform
synchronization of flows during handoff, controls delay-
jitter control and rate control.

4.2 The Experiments

Our evaluation methodology is based on a set of
experiments designed to investigate the performance of
the programmable mobile network in supporting mobile
multimedia communications. The use of CORBA for
mobile signaling, wireless adaptation and mobile network
programmability is a novel aspect of our work. CORBA
objects run at the edges and in the mobile network to



support wireless-QOS and mobile-QOS. An important
aspect of our evaluation was to determine if such
distributed object technology was viable in supporting
mobile signaling and adaptation management.

Figure 8a:  Handoff with flow bundling ON

Figure 8b:  Handoff with flow bundling OFF

4.2.1 Handoff Analysis

An important objective of this experiment is to
measure the handoff latency and understand how the
signaling system delays breakdown. In this experiment
we investigated the handoff of a single flow. Handoff
with flow bundling is described in the next section. For
this experiment we streamed a single video flow from a
fixed network server (S1) to a mobile device (M1). The
mobile device moved repeatedly between access points
AP2 and AP3 with the crossover switch located at the
ATML2 switch. The average handoff latency for the
baseline code is 171 msec. This figure broke down into
102 msec for mobile registration and object binding, 30

msec for wireless ATM connection setup and 35 msec for
wireline connection setup. The greatest portion of the
total latency time being absorbed by the binding process
between objects during handoff. As described in Section
3.2, the mobile device object remotely binds to the access
point object at the forward access point. Following this,
the access point locally binds to a QOS mapper object
and remotely binds to a mobility agent object for handoff
control.

The following enhancements were made to the
baseline code to reduce binding and Remote Procedure
Call (RPC) overhead. First, by collapsing unnecessarily
independent CORBA objects into a single object the
binding overhead was reduced.  To reduce binding over
the air-interface the mobile proxy and QOS mapper in the
access point object was collapsed. This reduced the
number of CORBA requests across the air-interface
reducing the binding time to from 102 msec to 42 msec.
Collapsing objects in this manner reduced the handoff
latency to 111 msec as illustrated in Figure 9. Next, by
reducing the number of CORBA RPCs the overhead
between objects during handoff we reduced. An RPC
across the air-interface between the mobile and access
point took an average of 15 msec to complete. The
number of RPCs between the mobile and access point
was reduced from four to two (viz. registration, handoff
request). Reducing the number of CORBA RPCs during
handoff reduced the handoff latency by 28 msec to 93
msec as illustrated in Figure 9.

Figure 9: Handoff latency measurement results

The final enhancement to the baseline handoff code
exploited the concept of caching object bindings. In order
to eliminate the binding latency, we setup and cached
bindings between remote CORBA objects prior to
handoff being initiated which we call this pre-binding.
All access points periodically broadcast their beacon
including address information, signal strength and
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available resources. When mobile devices receive these
beacons in promiscuous mode they register the signal
quality in lieu of a possible handoff to a new access point.
A pre-bind capability was to be added to the
programmable mobile network to allow mobile devices to
pre-bind to neighboring access points in advance of
handoff. The pre-binding criterion is based on the signal
strength and available resources. The pre-binding
algorithm issues a pre-bind to an access point object on-
the-fly establishing TCP connections for the CORBA
IIOP between the mobile device and the access points.
Another enhancement establishes binding between all
access point objects in a domain and its associated mobile
agent object. This final enhancement reduced the average
handoff latency from 171 msec to 51 msec.

4.2.2 Flow Bundling Analysis

This experiment evaluates the performance gains using
flow bundling during handoff. We observe the
performance of handing off multiple flows with flow
bundling disabled and then enabled. In the experiment
video is streamed from three independent sources (viz.
S1, S2, S3) across the network to a single mobile device,
which is repeatedly moving between access points AP2
and AP3.  When flow bundling is disabled each flow S1,
S2 and S3 is independently re-routed during handoff via
the ATML1, ATML2 and ATML3 crossover switches,
respectively. When flow bundling is enabled all flows are
bundled at the per-mobile QAP located at the Scorpio
switch and re-routed during handoff via a single cross
over switch located at the ATML2 switch as illustrated in
Figure 8a.

In this experiment, we vary the number of video
streams from one to ten flows with bundling enabled and
disabled and measure the handoff latency. The results
from the baseline measurement highlight the speed up
achieved using flow bundling in the access network as
illustrated in Figure 10. For two flows with and without
flow bundling enabled the handoff latency is 200 msec
and 250 msec, respectively. As the number of flows
increase the benefit of bundling becomes more
pronounced. For ten flows with and without flow
bundling enabled the handoff latency is 320 msec and 780
msec, respectively. The adoption of flow bundling
provides an improvement of 20% for two flows and 59%
for ten flows. With flow bundling enabled (as illustrated
in Figure 8a) the handoff latency converges whereas with
flow bundling disabled, the latency increases almost
linearly as the number of flows increases. These results
indicate the benefit of using flow bundling to reduce
handoff latency and signaling overhead. This is mainly
due to the fact that all interactions between objects during
handoff deals with aggregated signaling rather than per-
flow signaling.

The baseline code was enhanced to support the
optimization described in section 4.2. In addition, the
GSMP messaging between the switch server and GSMP
provided some incremental improvements. The handoff
latency was reduced to 56 msec with bundling and to 67
msec without bundling for two flows showing a 16%
improvement. In contrast, the handoff latency for ten
flows was 155 msec and 420 msec with and without
bundling, respectively showing a 63% improvement.

The baseline code only provides flow bundling support
between the mobile device, access point and mobility
agent objects. The interface between the mobility agent
and the switch server are per-flow. Another observation is
that the GSMP interface between the switch server object
and switch does not provide any support for aggregation,
i.e., GSMP client cannot update the switch table for more
that one VCI pair. To address this we enhanced the
GSMP interfaces used by the switch server object. This
resulted in seamless support for flow bundling
aggregation from the mobile device to the switch tables
providing some level of speed up as illustrated in Figure
10. The GSMP enhancements described in Section 3.3
include a “parallel” enhancement, which did not require
any changes to the GSMP code. In this case, for two
flows the latency for total GSMP messages is 849 µsec
without aggregation, and 511 µsec with aggregation
showing a 40% improvement. With increasing number of
flows, the total gain obtained by aggregation increases up
to 70% for ten flows (3907 µsec vs. 1184 µsec).

Figure 10: Performance gain with flow bundling

4.2.3 Mobile Soft-State Analysis

This experiment demonstrates the ability of mobile
devices to adapt their bandwidth needs to changes in
wireless-QOS and mobile-QOS based on mobile soft
state.  Mobile devices periodically probe and adapt to
changes in available resources in wireless access
networks. Users characterize flows using an adaptive-
QOS API (described in Section 2.1) that includes a utility
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function and adaptation policy.  In this experiment we
present two scenarios that illustrate the benefit of mobile
soft state in wireless and mobile environments.

Figure 11a: QOS adaptation within a single cell

Figure 11b: Handoff driven QOS adaptation

The first scenario illustrated in Figure 11a shows the
QOS adaptive behavior of two mobile devices M1 and
M2 operating within a single wireless cell. Mobile
devices M1 and M2 receive the “True Lies” and “Star
Wars” video streams, respectively. Both video flows are
based on discretely-adaptive utility functions, i.e., multi-
resolution flows. Initially, M1 and M2 receive a base
layer (BL) at 80 Kbps, and a base and enhancement layer
(E1) at 150 Kbps, respectively. Currently, the adaptive-
QOS service gives priority to support the minimum
bandwidth requirements of multi-resolution flows
[Campbell,95]. During the scenario, M2 registers an
increase in bit error rate as it moves away from its current
access point. Adaptive FEC is applied to the video
between the access point and M1 based on the observed
SNR and the measured bit error rate. An adaptive FEC
object selectively codes the base and enhancement layers
of the “star wars” video increasing the bandwidth

consumed by M1 from 150 Kbps to 250 Kbps. For the
experiment, the maximum capacity of the air-interface is
set to 330 Kbps and around 50 seconds into the scenario
the M1 video is adapted back to the base layer with FEC
only. Resources released by M1 are consumed by M2
increasing its utility at 50 seconds7 into the scenario. This
situation remains constant until M1 handoffs to a new
access point after 80 sec allowing the access point to
deliver another enhancement layer to M2. Note that
mobile initiated adaptation to released resources (i.e.,
scaling up) is somewhat dependent on the refresh/probe
interval. When a new mobile devices M3 enters the cell
around 120 sec access point M1 is explicitly scales back
by dropping an enhancement layer. Toward the end of the
scenario M3 probes and scale up to a better perceptible
quality as M2 hands off to a new access point. At 140 sec
into the scenario, mobile device M3 sets up a new flow to
access web services initially downloading a GIF file at a
rate of 70 Kbps scaling up to 135 Kbps.  In related work
[Bianchi,98a] we are investigating a generalized
adaptation policy mechanism where applications can
specify application specific adaptation semantics. For
example, some applications would not wish to experience
the adaptation observed by M2 while others may be as
aggressive as M3 in exploiting any available resources.

The second experiment highlights a number of
different QOS adaptation scenarios that can take place
during hand off. In this experiment, mobile devices hand
off to the access point AP2 from AP1 and AP3. In this
experiment, QOS adaptation is not, however, based on the
mobile soft-state refresh mechanism described and
evaluated in the previous section. Rather, as part of the
QOS re-negotiation phase during handoff, mobile devices
scale their quality of service needs to match the available
resources. The handoff point at which each of the four
mobile devices (viz., M1, M2, M3, M4) enter the new
access point AP2 is illustrated in the trace shown in
Figure 11b. The type of adaptation that takes place after
handoff points, which is marked as H1 through H4, is
illustrated. During handoff a number of adaptation
scenarios may occur depending on the available resources
and the ability of existing mobile devices to adapt.  For
example, the new access point may force existing mobile
devices to drop enhancement layers to allow a new
mobile to enter the cell with minimum QOS assurances.
In this experiment, mobile device M1 enters the new cell
at H1 and scales up its utility to take advantage of
available resources. M1 adaptation policy is to only scale

                                                  
7 Mobile device M1 probes and adapts to the additional bandwidth
within a single refresh interval that currently set to 10 sec. There are a
number of tradeoffs in setting the probe interval.  A Smaller duration
allows mobile devices to aggressively grab resources on a fast time
scale. However, this increases the signaling load overhead. We are
investigating coupling the probing and adaptation time scales to the
application level adaptation policy [Bianchi,98a]
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after handoff. At point H2 mobile device M2 hands off to
the access point AP2 and is forced to scales down to its
base layer. Mobile device M3 has an adaptation policy of
never adapting.  At H3 the mobile hands off to AP2 and
maintains its current utility. In the final part of the
experiment, M4 hands off to AP2 at point H4. In this
instance, insufficient resources are available to support
the base layers of M1, M2, M3 and M4 forcing the access
point to deny the handoff.

5. Conclusion

In this paper we presented the design, implementation
and evaluation of an open programmable mobile network
based on distributed object technology called mobiware
that dynamically exploits the intrinsic scalable properties
of adaptive mobile applications. We have analyzed the
performance of mobiware’s QOS controlled handoff,
flow bundling and mobile soft state algorithms. While the
baseline code raised some initial performance concerns
about the viability of using distributed object technology
for controlling mobile networks the enhanced software is
extremely competitive in relation to existing work.  The
latency measured for QOS controlled handoff was
reduced from 171 msec to 51 msec for the handoff of a
single flow through two ATM switches making handoff
through a single switch in the order of 25 msec. In
[Porter,95, Naylon,97] and [Mishra,97] handoff latencies
were measured to be 10 and 30 msec for a single flow
through a single cross over switch. The use of flow
bundling techniques in mobile networks shows great
performance increases as the number of flows increase
during handoff. The handoff latency for ten flows is 155
msec when flow bundling was enabled and 420 msec
when disabled. This clearly shows the advantage of such
aggregation techniques. Mobiware’s flow bundling
compares favorably to the literature. In [Mishra,97]
Partho reported a handoff latency of 125 msec for ten
flows using native ATM signaling code. Mobile soft-state
also exploits aggregation techniques provided by flow
bundling. This allows resource probing to be based on
flow bundles rather than per-flow. In the paper QOS
adaptation techniques clearly demonstrates the benefit of
mobile soft-state in sharing resources among competing
mobiles in a cell.

A number of researchers have applied distributed
object technology to mobile systems. Our work, however,
differs from these efforts. First as part of the open
signaling community [OPENSIG,96] we are deeply
interested in identifying open programming interfaces for
mobile and wireless networking. In this work we have
identified a number of objects, APIs and algorithms that
provide QOS support for adaptive mobile systems. The
mobiware technology we have developed over the last

two years marks a considerable software effort.  To our
knowledge we are one of the first group to apply
distributed object technology as a mobile middleware
solution. Mobiware objects execute on the mobile
devices, at the access points and on switch/routers
exposing open APIs that can be programmed to support
mobile signaling, QOS adaptation management and
wireless transport. We observe that once the wireless and
mobile APIs have been designed the programming of new
network algorithms, e.g., QOS controlled handoff, flow
bundling and mobile soft-state was straightforward
engineering.
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