
Architectural Issues for Multicast Congestion Control

Anindya Basu S. Jamaloddin Golestani
Bell Laboratories Bell Laboratories

basu@research.bell-labs.com jamal@research.bell-labs.com

Abstract

As multicast applications are becoming more common,

multicast congestion control has become an important

problem. In this paper, we present an architecture for

multicast congestion control schemes. We identify three

components that constitute this architecture: namely, the

feedback consolidation mechanism, the round-trip time

measurement mechanism, and the loss detection and

timeout mechanism. We then show how these mech-

anisms can be implemented for both rate-based and

window-based congestion control schemes under vari-

ous feedback topologies. Finally, we discuss the trade-

offs involved in these implementations when we use

the different congestion control schemes (rate-based vs.

window-based) and feedback topologies.

1 Introduction

Multicast congestion control has become an important

problem as multicast applications are becoming more

widespread on the Internet. A large class of multicast

applications use reliable multicast which requires loss-

less data delivery from a sender to a receiver group.

For example, a software vendor could use this service

to distribute the latest version of its software to its reg-

istered customer base1. Over the last year, multiple

congestion control schemes for reliable multicast have

been proposed [RVC98, GS99, Chi98, WC98, HF98].

These schemes come in a variety of flavors: for exam-

ple, a congestion control scheme could be rate-based or
1This is in contrast to multicast applications that do not require

every data packet to be delivered at the destinations. For example,

applications that use multicast to distribute audio and/or video over

the Multicast Backbone (MBONE) can tolerate dropped packets up to
some threshold limit.

window-based depending on whether the transmission

rate or the the window size is adjusted in response to

network congestion. At the same time, a congestion con-

trol scheme could be tree-based [PSLB97] or broadcast-

based [FJM+95] depending on the topology used to send

feedback to the sender. It is thus clear that the design

space for such schemes is extremely diverse and careful

analysis is required in order to identify the relative merits

and demerits of a specific scheme.

A multicast congestion control scheme has two main

components: a policy component that enforces a spe-

cific congestion control discipline, and a monitor compo-

nent that monitors the network and provides information

about the state of congestion in the network to the policy

component. It is the policy component that determines,

for example, whether the regulation parameter [GS99] is

the transmission rate or the window size, and whether the

feedback topology is tree-based or broadcast-based. The

monitor component supports the policy component by

collecting and consolidating information about the net-

work state, such as round trip times and packet losses

and makes it available to the policy component. This in-

formation is used by the policy component to regulate

the transmission rate or the window size. In short, the

monitor component provides a basic architecture that can

be used to build specific congestion control schemes, as

determined by the policy component. In this paper, we

focus on this architecture. We first identify what net-

work related information a monitor component needs to

provide to a policy component. We then study how this

architecture (or the method of collecting this informa-

tion) is affected by the choice of different parameters in

the policy component.

The main contribution of this paper is a detailed study

1



of alternative architectures for constructing congestion

control schemes for reliable multicast. We identify three

basic primitives (or mechanisms) that constitute this ar-

chitecture: the feedback consolidation mechanism, the

round trip time measurement mechanism, and the loss

detection and timeout mechanism. We then present how

these mechanisms can be implemented in a variety of

scenarios that are determined by the configuration of the

policy component. For example, we try to answer ques-

tions such as “What effect does the choice of rate or win-

dow size as a regulation parameter have on how we con-

solidate feedback?” or “How should we estimate round

trip times when a tree-based feedback mechanism is used

as opposed to when a broadcast-based feedback mecha-

nism is used?” and so on. The purpose of this paper

is not to study specific congestion control schemes or to

propose new ones, but rather to develop a framework for

studying general techniques for doing multicast conges-

tion control. This will enable us to understand the trade-

offs involved when choosing a certain congestion control

scheme for a specific application.

We find that if round-trip times are to be estimated

in a scalable manner, it is necessary that the receivers be

organized into some kind of hierarchy to send feedback.

The more well-defined the hierarchy, the more accurate

the round-trip time estimates. We also find that in the ab-

sence of a well-defined hierarchy, rate-based schemes al-

low for more scalable feedback consolidation (and there-

fore reduced feedback overheads) than window-based

schemes. Finally, we find that timeouts can be detected

more accurately when a well-defined hierarchy exists for

the receivers.

The rest of the paper is organized as follows: Sec-

tion 2 provides a brief overview of the requirements

for multicast congestion control and identifies the three

mechanisms that constitute the monitor component. Sec-

tion 3 explores how feedback consolidation can be scal-

ably done under a variety of environments. Section 4 dis-

cusses how round-trip times can be estimated in a scal-

able manner. Section 5 describes mechanisms for loss

detection and timeouts. We discuss the implications of

our findings and conclude in Section 6.

2 Requirements for Reliable Multicast Congestion
Control

An end-to-end congestion control scheme controls net-

work congestion by regulating traffic at the sender. Two

well-know types of end-to-end traffic regulation are the

rate-based and the window-based schemes. In rate-based

schemes, theregulation parameteris the transmission

rate (or the sending rate)rs. This means that traffic is

regulated by keepingrs at or below an acceptable level.

Rate-based schemes work in the same way for both uni-

cast and multicast communication. In window-based

schemes, the regulation parameter is the number of out-

standing packets to the receiver(s) and the traffic is con-

trolled by keeping this number at or below the assigned

window size. It is shown in [GS99] that in multicast

communication, window-based regulation requires one

window sizewj per receiverj: the number of outstand-

ing packets to each receiver must be independently con-

trolled and kept below the corresponding window size.

Applying a common window size to all receivers typi-

cally results in restricting the multicast transmission rate

beyond the requirements of congestion control. There-

fore, window-based schemes for multicast must useN

regulation parameterswj , whereN is the number of re-

ceivers.

An important part of traffic regulation is to adaptively

determine the regulation parameter(s) of choice, based

on the network congestion status. In rate-based regu-

lation, the approach that has been commonly proposed

for determining the raters, is to first determine an ac-

ceptable raterj for each receiverj, solely based on con-

gestion status of the network path leading toj, and re-

gardless of other receivers’ status. The actual multicast

transmission raters is then set to

rs = min
j

rj : (1)

This approach for determining the multicast transmis-

sion rate may be calledunicast decompositionsince the

nominal receiver ratesrj are determined based only on

the status of the communication path toj. In window-

base regulation, the unicast decomposition approach

translates to determining each window sizewj , solely

based on the congestion status of the path leading toj

[GS99]. In general, one can conceive of other ways of

updating the regulation parameters. However, our dis-

2



cussion in this paper is based on the unicast decomposi-

tion approach, since it leads to simpler implementations.

The current Internet lacks mechanisms for explicit

congestion notification. Thus, the only available signs of

congestion are the packet losses and packet delays that

are observable by each receiver. Therefore, an algorithm

for updating a receiver’s nominal raterj or window

sizewj must make use of the loss and delay (or round

trip time) measurements pertaining to packets traveling

towards that receiver. Unlike TCP congestion control

where such an update algorithm is run at the sender, scal-

able implementations of congestion control for multicast

communication require areceiver-drivenapproach. In

this approach, each receiverj is responsible for updating

its raterj or window sizewj based on its delay and loss

observations. As (1) indicates, in rate-based regulation,

the receiver should provide a feedback with the updated

valuerj to the sender (or some other entity in the group)

so that the transmission raters may be determined. In

window-based regulation, however, the updated window

sizewj is not the right feedback to be sent byj. As

shown in [GS99], each receiver should compute a num-

bernj as the maximum packet sequence number that it

expects and send a feedback with that value. This pa-

rameternj is a function of the window sizewj and other

information locally available atj [GS99]. The sender

performs traffic regulation by only sending packets up to

the sequence numbernsend, determined by

nsend= min
j

nj : (2)

We refer to the ensemble of activities needed to execute

(1) or (2), asconsolidation of receiver feedback.

We now summarize the results of the above discus-

sion. Implementing an end-to-end, receiver-driven, mul-

ticast congestion control strategy, based on unicast de-

composition, requires mechanisms for executing the fol-

lowing activities in a scalable manner.

– A mechanism for consolidating receiver feedback in

(1) or (2).

– A mechanism for estimating receiver round trip times,

and

– A mechanism for detecting packet losses and time-

outs.

In this paper, we describe an architecture composed

of the above three elements to support implementation

of congestion control. We are not interested in the form

and details of algorithms needed to update receiver rates

or window sizes, beyond asserting that such algorithms

utilize the message loss, and round trip time (RTT) infor-

mation available to each receiver for the following pur-

poses:

– The loss information serves as the main indication of

congestion, in the current Internet where no mech-

anism for explicit congestion notification exists.

– The round trip time estimation, if done on a short time

scale, provides an additional measure of network

congestion.

– More importantly, the receiver round trip time in-

formation could be necessary in order to achieve

a certain fairness criterion in congestion control.

As shown in [GS99], if the fairness criterion is

such that the average throughput is inversely pro-

portional to the round-trip time (a la TCP), then rate

based regulation scheme require the estimation of

round trip times. On the other hand, if the fairness

criterion is such that the average throughput is inde-

pendent of the round-trip time, then window based

regulation schemes require estimation of round trip

times. Thus, in order to achieve a given fairness

criterion in congestion control schemes, it is not

possible to implement both rate-based and window-

based schemes without estimating round-trip times.

For at least one of these two forms of regulation,

receiver RTTs must be known.

A particularly important case in loss detection is the

detection of back-to-back losses up to (and including)

the most recent message from the sender. It is important

that the receivers be able to distinguish this case from the

situation where the sender simply stops sending. Time-

outs are necessary for this purpose and thus the appro-

priate setting of timeouts is an important function.

We now briefly describe the elements in the pol-

icy component that affect the architectural elements.

For the purposes of this paper, we have identified two

such elements — the regulation parameter and the feed-

back topology. The regulation parameter can either

be the transmission rate, in which case the conges-

3



tion control mechanism is rate-based, or the window

sizes, in which case the congestion control mechanism is

window-based. For example, TCP uses a window-based

mechanism whereas the proposed TCP Friendly Reli-

able Multicast Congestion Control Algorithm (TFMCC)

[HF98] is a rate-based one. As we shall see in Sec-

tion 3, the choice of the regulation parameter has im-

portant consequences for the architecture. The second

policy element that affects the architecture is the feed-

back topology. A common feedback topology is the tree-

based feedback topology where the receivers are orga-

nized into a tree (typically at transport layer) with the

sender at the root, and each receiver sends its feedback

to its parent in the tree. The RMTP protocol [PSLB97]

uses this mechanism. Alternatively, a broadcast-based

feedback topology could be used, such as in the SRM

protocol [FJM+95]. In this case, each receiver broad-

casts its feedback to the entire multicast group (or a

subset thereof). Excess feedbacks are suppressed using

randomization or some other technique, so as to avoid

the feedback implosion problem. Note that the feed-

back topology is different from the feedback consoli-

dation mechanism — they are undoubtedly tightly cou-

pled, but the feedback topology specifies who to send the

feedback to and the feedback consolidation mechanism

specifies how to make the feedback sending mechanism

scale. In the next few sections, we discuss each of the ar-

chitectural elements in greater detail and show how they

are affected by the different choices for the regulation

parameter and the feedback topology.

3 Consolidation of Receiver Congestion Control
Feedback

While the feedback consolidation in (1) or (2) is concep-

tually simple, it still poses a scalability problem at the

sender if the sender is left with the task of receiving and

processing feedback from all receivers and performing

the minimization. This scalability problem may be al-

leviated in a number of ways. One solution would be

to organize the receivers into a hierarchy of groups and

subgroups. The consolidation can now be performed in

multiple stages by first consolidating the feedback of re-

ceivers within the smallest subgroups and then progres-

sively consolidating feedback in larger subgroups until it

is complete [GS99]. This solution can be implemented

using a tree-based topology either at the transport layer

or at the network layer. Since the current Internet does

not have any network layer support for congestion con-

trol, we use a transport layer tree topology for sending

feedback. Another solution would be to suppress feed-

back from receivers that have been determined not to

have the smallest feedback. One way to accomplish this

is with a broadcast-based feedback topology where every

receiver can hear the feedback sent by other receivers. A

receiver that hears a feedback smaller than its own sup-

presses its own feedback. This approach is similar to

the technique used for error control in the SRM proto-

col [FJM+95]. Hybrid topologies based on various com-

binations of the tree- and broadcast-based topologies can

also be used. In the rest of this section, we study feed-

back consolidation using these topologies for both rate-

based and window-based congestion control. However,

before considering any specific feedback topology, we

describe a feedback suppression technique that can be

used in any feedback topology.

3.1 Suppression of Receiver Feedback

We consider rate-based congestion control first. We as-

sume that congestion control feedbackrj is sent from

each receiverj directly to the sender. We also assume

that the current transmission rate is known to the re-

ceivers. This information can be explicitly included in

the packet headers at the time of transmission. Further-

more, the receivers may send feedback either periodi-

cally, or when certain special packets (typically flagged

by the sender) are received. In either case, we refer to

the interval between successive rounds of feedback as

thefeedback interval.

Let rpast
s be the most recent transmission rate of the

sender. Let the smallest feedback received by the sender

during the previous feedback interval be from receiver

b, i.e., letrpast
b = r

past
s . Denote byÆmax the maximum

increase that the raterb of receiverb could have under-

gone during the past feedback interval. Based on the

algorithm used to update receiver rates, an explicit ex-

pression can be provided forÆmax as a function ofrpast
s

and the duration of the most recent feedback interval. It

follows that the feedbackrb that receiverb now provides

to the sender cannot be more thanrpast
b + Æmax. There-

fore, unless receiverb has dropped out of the multicast

group, the transmission rate,rs, of the sender after the

4



next update will satisfy:

rs � rpast
s + Æmax: (3)

It follows that a receiverj with the updated raterj can

suppress its feedback if

rj > rpast
s + Æmax; (4)

because the new value ofrj will have no effect in updat-

ing the value ofrs.

We now ask the following question: if the feedback

value of a receiver remains (almost) unchanged after

a feedback interval, should the receiver send the feed-

back? The answer depends on whether the sender, after

each feedback interval, removes the feedback value that

it has received from each receiver, or stores it and con-

tinues to apply it in subsequent updates until it receives a

new feedback from the same receiver. We refer to these

two scenarios asmemorylessandwith-memoryconsol-

idation, respectively. It may appear that with-memory

consolidation allows for better suppression since a feed-

back need not be sent unless its value has changed. This

is not always true: letrlast
j denote the last feedback value

sent byj to the sender. Assume that, after an update,

the new feedback valuerj satisfies the condition stated

in (4). In memoryless consolidation, the feedback can be

safely suppressed byj. However, in with-memory con-

solidation, the suppression would be allowed only if the

outdated feedback valuerpast
j , which is kept at the sender,

also satisfies

rlast
j > rpast

s + Æmax: (5)

Otherwise, rlast
j could become the smallest feedback

value at the sender during the next update and restrict the

new sender rate, unnecessarily. Note thatrlast
j andrpast

s

do not necessarily belong to the same feedback interval;

while rpast
s is the transmission rate during the most recent

interval,rlast
j is the most recent feedback sent byj, which

may have been sent during any previous interval.

The above observations for the cases of memoryless

and with-memory consolidation may be summarized as

follows:

Memoryless Consolidation: Feedback may be sup-

pressed by a receiverj, provided thatrj satisfies

(4).

With-memory Consolidation: Feedback may be sup-

pressed by a receiverj, provided that one of the

following conditions are met:

min(rj ; r
last
j ) > rpast

s + Æmax; (6)

or,

rj � rlast
j : (7)

Qualitatively speaking, when receiver rates typically

undergo small changes during an update, with-memory

consolidation results in better suppression. Conversely,

if the rate update algorithm is more dynamic and results

in larger changes in receiver rates, memoryless consoli-

dation could allow for more suppression, since it is less

likely that (6) would be satisfied even when (4) is met.

In general,Æmax should be a relatively small value

since the increments in receiver rates during rate up-

dates are typically small. Therefore, the above suppres-

sion policy in both memoryless and with-memory cases

leads to substantial reduction in the number of feedback

messages sent to the sender. Typically, a small fraction

of receivers would need to send feedback during each

feedback interval. Nevertheless, the scalability improve-

ment provided by the above suppression policy is rela-

tive; with a sufficiently large multicast group, the sender

could still suffer from the feedback implosion problem.

In Sections 3.3 and 3.2, we shall discuss other feedback

consolidation techniques that either improve the perfor-

mance of the feedback suppression mechanism or make

the consolidation mechanism scale better.

We consider window-based congestion control next.

For a receiverj, let wj andmj denote the window size

of j and the highest packet sequence number received by

j. Assuming that all packets with sequence numbers up

to mj have been received, the feedback parameternj is

calculated byj as [GS99],

nj = mj + wj : (8)

We now determine the conditions under which receiver

j can suppress its feedback. Letmj + oj be the high-

est sequence number of a packet that has been sent by

the sender at the time it receives a feedback (if not sup-

pressed) fromj for packetnj . It follows thatoj is the

number of outstanding packets that have been sent to

receiverj when feedback fornj arrives at the sender.

We can further say that the feedback fornj can be sup-

pressed ifnj is sufficiently larger thanmj + oj . Alter-

natively, using (8), we can say that the feedback fornj

can be suppressed ifwj is sufficiently larger thanoj .

5



There are two major problems in determiningoj .

First, the receiver needs to determine the number of out-

standing packets at a time in the future: i.e., the time

when the feedback fornj would reach the sender (if not

suppressed). This issue can be addressed by using some

upper bound onoj , based on the number of outstanding

packets toj at some recent time in the past. For example,

let opastj denote the number of outstanding packets toj

when packetmj was sent by the sender. It may be pos-

sible to find a value
max such that the following upper

bound would hold:

oj � opast
j + 
max: (9)

Using this result, the decision to suppress the feedback

for nj would depend on whether or notwj is larger

thanopast
j + 
max. The second problem is that in large

multicast groups, determining the number of outstand-

ing packets toj, even at some time in the past, is not

feasible. This would involve sending acknowledgments

from each receiverj to the sender for some or all packets,

having the sender determine the number of outstanding

packets for eachj, and reporting it back toj. This pro-

cedure does not scale and produces additional feedback

messages instead of suppressing them.

In conclusion, while the transmission rate can be

readily determined by each receiver in a multicast group,

the same is not true about the number of outstanding

packets to the receivers. Notice also that the transmis-

sion rate is the same for the whole multicast group,

while the number of outstanding packets vary from re-

ceiver to receiver. Because of this fundamental differ-

ence between determining the rate and the number of

outstanding packets, we conclude that the feedback sup-

pression method discussed above for rate-based conges-

tion control cannot be extended to window-based con-

gestion control without severely limiting scalability.

3.2 Feedback Consolidation for Broadcast-based
Topologies

We now consider a pure broadcast feedback topology in

which each receiver broadcasts its feedback messages to

the entire multicast group. In [HF98], a feedback sup-

pression technique for rate-based congestion control has

been described which exploits the fact that each receiver

hears the feedback sent by other receivers. We refer to it

as therandom waittechnique. The idea is very similar

to the one used in [FJM+95] for the suppression of er-

ror control messages. Once the sender polls the receivers

to send their congestion control feedback, each receiver

schedules the transmission of its feedback after a ran-

dom delay. However, the feedback is suppressed if, prior

to the scheduled time, the receiver hears a feedback from

some other receiver with a lesser or equal value. The de-

lay distribution used to schedule the sending of the feed-

back depends on the feedback value to be reported, such

that receivers with a smaller feedback value (and thus

more likely to form the bottleneck) tend to send their

feedback sooner. A random (rather than a fixed) delay

is used so that the transmission of feedback by receivers

with almost equal feedback parameters would not coin-

cide. This would allow for the suppression of similar

feedback messages which have been scheduled for a later

time.

The performance of the above feedback suppression

scheme is still to be studied. However, it is qualita-

tively clear that the amount of suppression that can be

achieved by this technique depends on the ratio of the

maximum permissible delay in scheduling feedback to

receiver round trip times. Unless the feedback from dif-

ferent receivers can be spread over several round trip

times, the achievable suppression would be negligible.

The random wait suppression scheme can be be com-

bined with the suppression technique proposed in Sec-

tion 3.1 to achieve better performance. In this combined

scheme, a feedback will not be scheduled if the feedback

value exceeds the threshold specified in (4) (or, in the

case of with-memory consolidation, satisfies (6) or (7)).

Finally, we note that the random wait suppression

scheme, like the technique of Section 3.1, cannot be

extended to window-based congestion control. The

essence of a window-based scheme is to provide quick

feedback from receivers in order to achieve tight control

at the sender over the number of outstanding packets to

each receiver. This approach is inconsistent with delay-

ing receiver feedback for up to several round trip times,

which is necessary to enable sufficient suppression.

3.3 Feedback Consolidation for Tree-based Topolo-
gies

In sections 3.1 and 3.2, we attempted to improve scal-

ability by suppressing feedback messages that could be

avoided. In this section, we summarize an alternative ap-

6



proach for improving scalability [GS99]. We consider a

multicast session with receivers organized hierarchically

in a tree, with the sender at the root, as shown in Fig-

ure 4.1. In order to eliminate feedback implosion at the

sender, the consolidation of feedback messages can be

performed in a distributed fashion at each node in the

tree. Each receiver in the tree periodically sends conges-

tion control feedback only to its parent in the tree. The

parent consolidates the feedback information from all its

children along with its own and sends it up the tree. Note

that each receiver can either send its feedback to its par-

ent as soon as the feedback value changes, or it can send

this value periodically (such as everyÆj units of time).

Feedback consolidation using a tree-based topology

scales well. For any group size, a hierarchical group or-

ganization always exists such that the number of children

of the sender or any parent receiver could be limited as

desired. Moreover, this approach is equally applicable to

rate-based and window-based congestion control.

Finally, we note that in rate-based congestion control,

the above tree-based consolidation scheme can, in prin-

ciple, be combined with the feedback suppression tech-

nique of Section 3.1 to further minimize the number of

feedback messages processed by each entity. However,

the improvement obtained from this combination is neg-

ligible except for tree-based topologies where the num-

ber of children per parent is very large.

4 Estimation of Round-Trip Times

In this section, we describe algorithms for measuring

round-trip times in a multicast setting. For this pur-

pose, we first define what we mean by the notion of a

round-trip time in a multicast environment. Typically,

the round-trip time between a sender and a receiver is

equal to the time elapsed between the sender sending

a packet and receiving an acknowledgment for it from

the receiver. In unicast communication, the packet round

trip times are measured by taking the difference between

the time a packet is sent out and the arrival of its ac-

knowledgment at the sender. Since both the send time

and the time of acknowledgment arrival are measured

at the sender, clock synchronization between the sender

and the destination is not required.

This approach cannot be used in multicast commu-

nication since it would lead to theack implosionprob-

lem at the sender for large multicast groups. One possi-

ble solution would be to measure one-way delays at the

receivers assuming some form of global clock synchro-

nization between the sender and the receivers. However,

this approach has a scalability problem since clock syn-

chronization algorithms depend on all-to-all broadcast

messages. An alternative approach would be to have all

members of the multicast group synchronize to GPS re-

ceivers, but such systems are still not commonplace. To

address this issue, we present a family of round-trip time

estimation algorithms that do not require clock synchro-

nization, are scalable, and work for multiple feedback

topologies.

4.1 The Tree-based Feedback Topology

We first consider a multicast session with a tree-based

feedback topology (Figure 4.1) in which each receiverj

regularly sends congestion control feedback information

to its parent. We define the round trip time for a receiver

j to be equal to the time that elapsed between the sender

multicasting a packetp (to all receivers in the group in-

cluding j) and the potential impact ofj’s acknowledg-

ment forp reaching the sender. We use the term “po-

tential impact ofj’s acknowledgment forp reaching the

sender” since an acknowledgment from a receiver low

down in the feedback tree never directly reaches the

sender, but is filtered and aggregated by intermediate

nodes. Now, the average round trip time�j for receiver

j can be expressed as,

�j = �s;j + Æj + �j;s ; (10)

where�s;j denotes the average one-way delay associated

with the forward path from the sender to receiverj, �j;s

denotes the average time between the transmission of a

feedback message by receiverj and the potential impact

of this message reaching the sender, andÆj is the av-

erage time between the arrival of a packet atj and the

transmission of the first congestion control feedback out

of j. For example, if congestion control feedback mes-

sages are sent by receiverj periodically, with a period

of �j , the time between the arrival of a packet atj and

the transmission of the first congestion control feedback

out ofj is uniformly distributed between0 and�j . This

implies thatÆj = �j=2.

Denoting the parent of receiverj in the tree hierarchy

7



Rcvrk Rcvr `

Rcvr j

Sender

,
,

,
,

l
l
l
l

�
�
��

...
.�
�� T

T
T
T
T

,
,

,

l
l
l- - - - -

- - - - -

- - - - -

SSo
SSw

��7
��/



� 

�

Fk

�̂k

F`

�̂`

Fj �̂j

Figure 1: A hierarchical organization of receivers for up-

ward consolidation of congestion control feedback and

downward distribution of delay information.

asj0, the delay term�j;s in (10) can be expressed as

�j;s = �j;j0 + Æj0 + �j0;s (11)

where�j;j0 denotes the average one-way delay for the

congestion feedback from receiverj to reach its parent

j0. Thus�j;s is the sum of the average time for the feed-

back to go fromj to j0 and then fromj0 to the senders.

TheÆj0 term accounts for the average time between the

arrival of a feedback message from the childj and the

transmission of the first feedback message out ofj0.

We now develop a recursive algorithm in which the

round trip time�j of each receiverj is determined using

the round trip time�j0 of its parentj0. To this end, we

first use an expansion similar to (10) for�j0 ,

�j0 = �s;j0 + Æj0 + �j0;s : (12)

Combining (10), (11), and (12) we get,

�j � �j0 = �s;j + Æj + �j;j0 � �s;j0 (13)

We now show that the delay difference�j � �j0 in equa-

tion 13 can be locally determined by the parentj0. Con-

sider a multicast packetp. Let tps denote the time at

which p is transmitted by the sender. Lettpj , tpj0 denote

the arrival time ofp at j, j0, respectively. We denote

by fdbk(p; j) the first congestion control feedback sent

from j to j0 after timetpj . Let this feedback arrive atj0

at timetfdbk(p;j)
j0 . Clearly,

Eftpj0g = tps + �s;j0 ; (14)

and

Eft
fdbk(p;j)
j0 g = tps + �s;j + Æj + �j;j0 : (15)

Now, consider the quantity

�pj;j0
�
= t

fdbk(p;j)
j0 � tpj0 : (16)

This quantity is the difference in time between the oc-

currence of two events: the first event occurs whenj0 re-

ceives the packetp and the second, whenj0 receives the

first feedback message thatj sent out afterj receivedp.

Since these two events are both observed by the same re-

ceiverj0, their time difference can be measured without

any clock synchronization. Furthermore, by combining

(13) – (16), we may express the average value of�pj;j0 , as

follows

�j;j0
�
= Ef�pj;j0g = Eft

fdbk(p;j)g
j0 �Eftpj0g

= �s;j + Æj + �j;j0 � � s;j0

= �j � �j0 : (17)

Or, equivalently,

�j = �j;j0 + �j0 : (18)

In summary, we have shown that the round trip time

of each receiverj can be recursively determined by

adding�j;j0 to the round trip time of its parent. The

quantity �j;j0 , for each receiverj, may be determined

by its parentj0. This can be done by measuring�pj;j0 for

different packetsp and determining their average. We

refer to�j;j0 as theRTT differentialof receiverj.

Note that for the parentj0 to measure�pj;j0 , it must

be able to identify which of the feedback messages re-

ceived fromj is the first one sent following the arrival

of p at j. In order to facilitate this discussion, we now

make a distinction between the congestion control feed-

back and per-packet acknowledgments that are sent by

each receiverj to its parent (for all or some of the pack-

ets received byj) in order to assist the parent in cal-

culating the RTT differential ofj. The distinction made

here between the congestion control feedback and the ac-

knowledgments is an abstract one; in reality both types

of information could be embedded in the same physi-

cal message. Using the notation introduced earlier, let

tpj denote the time whenp arrives atj and lettAck(p;j)j

denote the time whenj sends out the acknowledgment

for p. Furthermore, lettAck(p;j)j0 denote the time when

8



j0 receives this acknowledgment, and let�j denote the

expected time it takesj to send the acknowledgment for

packetp after it has receivedp, i.e.,

�j
�
= Eft

Ack(p;j)
j � tpjg : (19)

Finally, let �̂j;j0 denote the expected time difference be-

tween the arrival ofp at j0 and the arrival of the corre-

sponding acknowledgment fromj, i.e.,

�̂j;j0
�
= Eft

Ack(p;j)
j0 � tpj0g: (20)

We call this theadjusted RTT differential. It follows that

�̂j;j0 = tps + �s;j + �j + �j;j0 � (tps + �s;j0)

= �j;j0 � Æj + �j ; (21)

where the last equality results from (13). The difference

between the quantitŷ�j;j0 which can be measured byj0

and the desired quantity�j;j0 consists of two terms�j
and�Æj , both of which can be measured by the receiver

j.

Now suppose thatj0 knows its round trip time�j0 ,

and the adjusted RTT differential̂�j;j0 for its child j.

Thenj0 computes the parameter

�̂j
�
= �j0 + �̂j;j0 (22)

and sends it down toj. Using (18), (21) and (19),j can

determine its round trip time�j as

�j = �̂j + Æj � �j : (23)

Thus, we conclude that the receiver round trip times in

a multicast group organized as a tree hierarchy can be

estimated using the following algorithm:

� Each receiverj that is a parent in the tree hierarchy

maintains an estimate of the adjusted RTT differen-

tial �̂k;j for each childk. Each timej receives a

packetp from the sender and an acknowledgment

for p from k, it uses the time difference between

these two events to updatê�k;j . The update may

be done by an exponentially weighted algorithm or

some other averaging process. This calculation is

also performed by the sender for each of its chil-

dren, i.e., for each receiver which is just one level

below the sender in the tree hierarchy.

� Each receiverj maintains an estimate of the param-

eter�j . Every time it sends an acknowledgment

for a packetp to its parent, it uses the time elapsed

between the arrival ofp and the sending of the ac-

knowledgment forp to update�j .

� Each time a receiverj receives a new feedback from

j0 about its adjusted round trip timê�j , it updates its

round trip time as,

�j = �̂j + Æj � �j : (24)

It also updates the adjusted round trip time of each

child k as

�̂k = �j + �̂k;j (25)

and sends a message with the updated information

to k. This process is initiated everyT seconds by

the sender, which sends to each childk its adjusted

round trip time �̂k = �̂k;s. (Recall that for the

senders, �s = 0.)

A more detailed description of this algorithm and some

applications can be found in [BG98]. A similar algo-

rithm was independently developed and presented at the

RMRG meeting in Dec, 1998 [Rhe98].

4.2 The Broadcast-based Feedback Topology

We now come to the case of the broadcast-based feed-

back topology. As explained in Section 3.2, in its purest

form, a broadcast-based feedback topology works as fol-

lows: on the receipt of a packet, a receiver waits for a

period of random duration to see if it receives a feed-

back from some other receiver that is less than or equal

to its own feedback. If not, it broadcasts its own feed-

back to the multicast group. In such a scenario, it is very

difficult, if not impossible, to estimate RTTs at the re-

ceivers because a particular receiver may never send any

feedbacks. We therefore solve the problem for a slightly

more structured topology, namely, the hop-scoped feed-

back topology that is described in the next section.

4.3 The Hop-Scoped Feedback Topology

The idea of a hop-scoped feedback topology has been

previously used for error-control [LESZ98]. In this

topology, each receiver sends out a feedback with a time-

to-live (TTL) field that limits the scope to all neighbors

9



within a certain number of hops. Any neighbor who re-

ceives such a feedback, consolidates it with all the other

feedbacks it has received, and rebroadcasts it (using the

same hop scoped mechanism) till it reaches the sender.

To solve the RTT measurement problem in this topol-

ogy, we first solve the problem in an intermediate, multi-

parent hierarchical topology, and then show how to ex-

tend the solution to the hop-scoped topology.

The Multi-Parent Feedback Topology: In the multi-

parent hierarchical feedback topology, the receivers are

organized as in the tree-based case, except that each node

can now have multiple parents. The only exceptions are

the direct descendants of the root, which have a single

parent.

Each receiver in the multi-parent tree topology sends

its congestion control feedback to all its parents. Each

parent then consolidates feedbacks from all its children

and sends the consolidated feedback up the tree till the

feedback reaches the root. This is possible because the

multi-parent hierarchical topology isloop-freei.e., it is

not possible to start from a receiverj and follow some

child-parent chain in the topology to end up atj once

more.

It is clear from the above description that the potential

impact of a receiver’s congestion control feedback can

reach the sender through multiple paths. Therefore, the

round trip time is determined by the feedback path with

the smallest delay. Note that the feedback path with the

minimum delay may change on a per-packet basis.

We shall now show that the iterative approach (de-

scribed in the last section) for estimating round trip times

is in essence applicable to the multi-parent hierarchi-

cal topology. This approach uses the delay differential

measured at each receiver. However, since we need to

determine for each packet, the smallest round trip time

over multiple feedback paths, the estimation of round

trip times requires some additional steps.

Consider a receiverj and letPj denote the set of par-

ents ofj, i.e. the receivers to whichj sends its conges-

tion control feedback. Let fdbk(m; j) denote the first

congestion control feedback sent byj, following the ar-

rival of messagem at j. The messagem can either be a

feedback message sent by a child ofj, or a data packet

sent by the sender. Denote byÆ(m; j) the time elapsed

between the arrival ofm at j and the transmission of

fdbk(m; j) by j. Consider a parentj0 2 Pj , and a given

packetp. Denote by�p;j
0

j the round trip time of packet

p for receiverj, assuming thatj has no parent other than

j0. Then,

�p;j
0

j

�
= tfdbk(p;j);j0

s � tps ; (26)

where tps is defined in Section 4.1 andtfdbk(p;j);j0
s

denotes the time at which the potential impact of

fdbk(m; j) reaches the sender, assuming thatj has no

parent other thanj0. Whenj has multiple parents, the

earliest time at which the potential impact of fdbk(m; j)

reaches the sender is

tfdbk(p;j)
s

�
= min

j02Pj

tfdbk(p;j);j0
s : (27)

Therefore,�pj , or the round trip time ofp to receiverj,

would be

�pj
�
= tfdbk(p;j)

s � tps

= min
j02Pj

�p;j
0

j : (28)

Let �mk;` denote the time taken by messagem to go

from k to `, wherem represents a data packet or feed-

back message, andk, ` represent nodes in the feedback

hierarchy. Using this notation, we can expand�p;j
0

j as

�p;j
0

j = �ps;j + Æ(p; j) + �
fdbk(p;j)
j;s

= �ps;j + Æ(p; j) + �
fdbk(p;j)
j;j0 +

Æ(fdbk(p; j); j0) + �
fdbk(fdbk(p;j);j0)
j0;s :(29)

Next, notice that the quantity�pj;j0 , earlier defined in

(16), may be expressed as

�pj;j0 = t
fdbk(p;j)
j0 � tpj0

= (tps + �ps;j + Æ(p; j) + �
fdbk(p;j)
j;j0 )� (tps + �ps;j0 )

= �ps;j + Æ(p; j) + �
fdbk(p;j)
j;j0 � �ps;j0 : (30)

As we observed before,�pj;j0 can be measured byj0, pro-

vided thatj0 knows which congestion control feedback

received fromj is the first feedback sent following the

arrival ofp at j. Earlier, we showed that for a tree-based

topology,�j;j0 (which is the same asEf�pj;j0g) equals the

difference between the round trip times ofj andj0. In

order to check the validity of a similar relationship here,

let us first define the auxiliary parameter~�
p(j)
j0 , as

~�
p(j)
j0

�
= �p;j

0

j � �pj;j0 : (31)

10



From (29)–(31), it follows that

~�
p(j)
j0 = �ps;j0 +Æ(fdbk(p; j); j0)+�

fdbk(fdbk(p;j);j0)
j0;s (32)

For comparison,�pj0 may also be expanded as

�pj0 = �ps;j0 + Æ(p; j0) + �
fdbk(p;j0)
j0;s : (33)

Note that the right hand sides of (32) and (33) have

the common form�ps;j0 + Æ(m; j0) + �
fdbk(m;j0)
j0;s , where

m = p in (33), andm = fdbk(p; j) in (32). The term

Æ(m; j0) in this expression is the time taken byj0 to send

the first feedback after the arrival of messagem at j0.

While the actual value assumed byÆ(m; j0) varies

from message to message, we can make the following

observation about its statistical average. If there is no

statistical correlation between the arrival times of (data

or feedback) messages at a receiver and the transmission

times of feedback messages by the receiver, then the sta-

tistical average of the quantityÆ(m; j0) is independent

of whetherm is a feedback message or a data packet. In

other words, the expected value ofÆ(m; j0) is the same

for all messagesm, regardless of whetherm is a data

packet or a feedback message.

Now consider the term� fdbk(m;j0)
j0;s . The assumption

we made forÆ(m; j0) also implies that the statistical av-

erage of� fdbk(m;j0)
j0;s is independent of whetherm is a

feedback message or a data packet. Based on these ob-

servations, we conclude that while~�p(j)j0 and�pj0 are not

equal, they have the same statistical average. We thus

have,

Ef~�
p(j)
j0 g = Ef�pj0g = �j0 : (34)

In the special case of a tree-based topology where each

receiverj has only one parent,�p;j
0

j = �pj . Therefore,

~�
p(j)
j0 = �pj � �pj;j0 , and the result in (34) agrees with our

earlier observation in (18).

We now use the result in (34) to calculate the average

round trip times�j . First, combining (28) and (31), we

have

�pj = min
j02Pj

�
�pj;j0 + ~�

p(j)
j0

�
: (35)

All we need for a receiverj is the average round trip

time �j = Ef�pj g, and not the round trip time�pj for

each packetp. Note that in general, the average of the

minimum of several random variables is not equal to the

minimum of their averages, i.e.

�j = Ef�pj g

6= min
j02Pj

E
n
�pj;j0 + ~�

p(j)
j0

o

= min
j02Pj

f�j;j0 + �j0g ; (36)

where the second equality follows from (34). We con-

clude that in order to determine the average round trip

time �j , there is no way but to first find the packet round

trip times�pj (or similar per-packet quantities to be dis-

cussed below) for several packets, and then calculate

their average. The only exception is when receiverj has

only one parentj0, in which case we can conclude from

(35) and (34) that

�j = Ef�pj g = �j;j0 + �j0 ; (37)

which is identical to (18).

A recursive algorithm for the estimation of packet

round trip times�pj would have been provided by Equa-

tion (35), if we could replace the quantities~�p(j)j0 in the

right hand side of (35) with�pj0 . Unfortunately, since

~�
p(j)
j0 6= �pj0 , the packet round trip times to various re-

ceivers in the multicast group cannot be determined re-

cursively. In the following, we exploit the fact that

Ef~�
p(j)
j0 g = Ef�pj0g, and come up with an auxiliary

quantity, called the modified packet round trip time�̂pj .

This quantity can be determined recursively and then

used to calculate the average round trip time�j .

Definition 1 The modified round trip time of packetp

for receiverj is recursively defined as

�̂pj
�
= min

j02Pj

�
�pj;j0 + �̂pj0

�
; (38)

where

�̂ps
�
= 0 : (39)

Theorem 1 Assume that the transmission delays be-

tween the various pairs of receivers in the multicast

group are statistically independent. Also assume that

the waiting timesÆ(m; j) between the arrival of a data

packet or feedback messagem at a receiverj and the

transmission of the first feedback fromj after this arrival

are statistically independent of the arrival time ofm and

the type ofm. Then, for each receiverj, the modified

packet round trip timê�pj and the actual packet round

trip time �pj are identically distributed. In particular,

Ef�̂pj g = Ef�pj g = �j : (40)

11



Proof: Omitted.

The above definition and theorem demonstrate how a

recursive algorithm may be used to efficiently estimate

the average receiver round trip times�j in a multicast

group with multi-parent hierarchical feedback topology.

The main features of such an algorithm are outlined be-

low:

� The algorithm should try to determine the modified

receiver round trip timeŝ�ps , for a sufficiently large

number of packetsp. The average receiver round

trip times �j , can then be estimated by applying

an appropriate averaging algorithm on the values of

�̂ps , obtained for the various packetsp.

� The modified round trip timeŝ�ps need not be de-

termined for every packetp. Instead, the algorithm

could determinê�ps for a subset of the packets trans-

mitted by the sender that are specially marked by

the sender for this purpose. Using this selective ap-

proach, the number of packets for which the mod-

ified round trip times are being measured concur-

rently, can be limited to a small number. This will

minimize the state that needs to be stored at each

receiver for calculating RTTs.

� Once a marked packet is received, its sequence

number should be included in the next congestion

control feedback sent by the recipient.

� When a receiverj has received a marked packetp

and a congestion control feedback from a childk

containing the sequence number ofp, it determines

the value of�pk;j as the time elapsed between the ar-

rival of p at j and arrival of the corresponding feed-

back fromk at j.

� For each marked packetp, once a receiverj has de-

termined its own modified RTT̂�pj (to be described

below), it calculates the quantity

�̂p;jk

�
= �̂pj + �pk;j (41)

for each childk and sends the result down tok. Ob-

viously, this may be done only after�pk;j has been

determined. The sender initiates this procedure by

sending down to each childk the valuê�p;sk = �pk;s.

� For each marked packetp, each receiverj waits un-

til it receives the quantitieŝ�p;j
0

j from all parentsj0.

It then computes its modified RTT for packetp as

�̂pj = min
j02Pj

�̂p;j
0

j : (42)

As explained earlier,j can now calculate its own

RTT �j by taking a running average of the quantities

�̂pj .

We note that this algorithm differs from the algorithm

described in Section 4.1 for the tree-based topology in

two ways. The first difference is that each parent must

provide delay information for every marked packet to its

children. This is in contrast to the previous algorithm

where the delay information provided by each parent

was based on running averages. The second difference is

that each receiver gets delay information from multiple

parents, and is responsible for computing the minimum

over this delay information.

Extending Multi-Parent to Hop-Scoped: We now

show a simple way in which the scheme for the multi-

parent feedback topology can be extended to the hop-

scoped feedback topology described earlier. The basic

idea is to super-impose a multi-parent hierarchical feed-

back topology on the hop-scoped feedback topology. Let

h be the maximum number of hops a feedback message

travels. For each receiver, an appropriate value forh

(such that the receiver remains connected to the sender)

can be calculated using periodic session messages as de-

scribed in [LESZ98].

The RTT measurement scheme works the same way

as in the multi-parent hierarchy except the following. In-

stead of sending congestion control feedback to all par-

ents, each receiver now sends congestion control feed-

back to all its neighbors withinh hops. If the sender

lies withinh hops, the receiver sends its feedback to the

sender only. Note that this process as-is could lead to

feedback loops, which will not allow us to superimpose

a multi-parent feedback topology. This is because the

multi-parent feedback topology is loop-free. Therefore,

we use the following technique to eliminate feedback

loops.

For any receiverj, let F (j) be the set of receivers

from which j receives congestion control feedback.

Then, if j is not the sender, it ignores congestion con-

trol feedback from all receiversk 2 F (j) where the IP

address ofk is lexicographically less than that ofj. In

12



other words, receiverj (if it is not the sender) treats all

neighbors with lexicographically lower IP addresses as

its parents and all other neighbors as its children. Hence,

for calculating updates tô�pj , �pk;j , and�j , it uses updates

from receivers inF (j) with lexicographically lower IP

addresses, and sends it own updates to receivers inF (j)

with lexicographically higher addresses. However, ifj is

the sender, then it treats all its neighbors withinh hops

as its children in the superimposed multi-parent hierar-

chy and accepts congestion control feedback from all of

them. There is still one problem with this scheme: if

receiverj has no neighbors within a distance ofh hops

with an IP address that is lexicographically less than its

own, its congestion control feedback will never reach the

sender. To remedy this, we modify the algorithm as fol-

lows: during the exchange of session messages, the value

of h is set at receiverj as

h = min(hm; hs) (43)

wherehs is the hop count to the sender andhm is the

minimum number of hops such that there is at least one

receiver with an IP address lexicographically less than

that of receiverj within hm hops2. If hm � hs, j sends

its congestion control feedback directly to the sender and

no one else. The rest of the algorithm is the same as in

the multi-parent case.

5 Loss Detection and Timeouts

In any reliable end-to-end transport mechanism, detec-

tion of lost packets is an important issue. Packet losses

are the only indication of network congestion since the

current Internet does not provide explicit congestion in-

dication3. Loss detection for congestion control can be

explicit or implicit. In the first case, individual lost pack-

ets are detected using sequence numbers. Every packet

is labeled with a unique sequence number that is incre-

mented whenever a new packet is sent. When a packet

is received out of sequence, it indicates a potential loss.

In the case of implicit loss detection, individual packet
2Strictly speaking, the number of hopsh should be given byh =

max(hc;min(hm; hs)), wherehc is the value for hop count calcu-
lated by the algorithm described in [LESZ98]

3This assumption is strictly true only for networks where the sole
cause of packet loss is buffer overflow in routers. In wireless networks,

where packet losses can occur due to data corruption, such an assump-

tion is invalid.

losses may not be detected: typically, some other pa-

rameter that is affected by packet loss (e.g., the packet

receive rate) is calculated at the receiver and compared

with the value of the same parameter when there is no

loss (e.g., the rate at which the sender is actually trans-

mitting, encapsulated in the packet header). If the differ-

ence between the two values exceeds a certain threshold,

a packet loss is signaled. In this case, the receiver does

not actually detect which individual packets have been

lost, only that some packets have been lost, and (possi-

bly) the number of lost packets. For multicast congestion

control, either mechanism can be used.

An important component of the loss detection mech-

anism is the timeout mechanism at the sender. A timeout

occurs at the sender when it has not received feedbacks

for a sufficiently long period of time. This is an indi-

cation of lost packets, and therefore, potential network

congestion. The timeout mechanism is responsible for

deciding when a timeout occurs, which is directly related

to the feedback topology since the feedback topology de-

termines how the feedbacks get back to the sender.

We describe a timeout mechanism for the tree-based

feedback topology first. In this case, as described in

Section 4.1, each receiverj in the feedback tree sends

a feedback every�j units. Thus, ifd1; d2; � � � ; dk de-

note the direct descendants of the sender in the feedback

tree, the sender receives direct (aggregated) feedbacks

from each of them every�d1 ;�d2 ; � � � ;�dk units, re-

spectively. The sender sets the timeout for receiverdi

to some multiple (greater than 1) of�di . Using a time-

out that is greater than�di ensures that there are not too

many premature timeouts. However, this is not enough

because of theunreported lossproblem: each receiver

j in the feedback tree keeps track of the last feedback

received from each of its children. These feedback val-

ues are used to compute the consolidated feedback that

is sent up the tree. Now, if feedbacks fromj’s child k

start getting lost due to congestion, the sender will not

be able to detect this becausej will continue to use the

value of the last feedback received fromk. To avoid this

problem, each receiverj maintains a localepoch number

ej that is incremented by�j every time it sends a new

feedback. For receiverj, letCj be the set of allj’s chil-

dren. Then the epoch numberEj included byj in each

of its feedback messages is given by:

Ej = min(ej ;minkfEk : k 2 Cjg) (44)

13



whereEk is the epoch numberj receives from its child

k. If the epoch number received by the sender from the

same direct descendantdi does not change for a suffi-

ciently long period of time,4 it implies that there is at

least one node in the subtree rooted atdi that has not sent

in a feedback for more than one feedback cycle. There-

fore, this is also a signal for potential network conges-

tion.

We now explain the rationale behind how the epoch

numbers are incremented: receivers that send feed-

back less frequently (low frequency receivers) than oth-

ers (high frequency receivers) will also increment their

epoch number less frequently. Therefore, if the epoch

numbers are incremented by the same amount at all

receivers, the epoch numbers at the low frequency re-

ceivers will always be lower. This, combined with equa-

tion (44) implies that the epoch number for a low fre-

quency receiver has a higher probability of being equal to

the final consolidated epoch number that the sender sees.

Now, letj, k be receivers with last reported epoch num-

bersEj ; Ek, respectively. Letj be a low frequency re-

ceiver andk be a high frequency receiver withEj � Ek.

Then the consolidated epoch number at the sender is at

mostEj . Assume that the feedbacks sent byk after the

one with epoch numberEk are lost. The sender will

not detect this till the consolidated epoch number at the

sender reachesEk, which is undesirable. To circumvent

this, the low frequency receivers must increment their

epoch numbers by a higher amount, and the increment

value of�j encapsulates precisely this.

We now come to the broadcast-based feedback topol-

ogy. In this case, for every packet sent, the sender re-

ceives feedback from the subset of receivers that did not

receive any feedback during their random wait interval

(see Section 4.2). For those receivers that belong to this

subset, the sender is able to estimate the time it takes

for them to send a feedback. However, such estimates

may not be enough to set a timeout period since the re-

ceivers that were forced to suppress their feedbacks ob-

viously require longer to send their feedback. Thus, if

the timeout period at the sender is set using only the re-

ceived feedbacks, it is possible that there is a receiver
4This period of time can be set equal to the maximum of�j +

Æ�j;j0 for all receiversj in the subtree rooted atdi, whereÆ�j;j0 is the

maximum expected variation in the transmission delay from receiverj

to its parent.

with a longer round-trip time, which implies that the

sender may timeout prematurely. To be on the conser-

vative side, it is necessary to set the timeout period to be

large enough such that the chances of a premature time-

out are low. Since such a timeout can be set only if we

have a large number of observations for feedback times

(that may not always be available), a default large value

(such as 500 ms) should be used.

Finally, we consider the hop-scoped feedback topol-

ogy. We have shown in Section 4.3 that a multi-parent hi-

erarchy can be superimposed on a hop-scoped feedback

topology. We therefore only show how to solve the time-

out problem for the multi-parent hierarchy. The algo-

rithm in this case is exactly the same as in the tree-based

case except that now the periodic feedbacks containing

epoch numbers are sent to all parents in the feedback

topology.

6 Conclusion and Future Work

In this paper, we have presented alternative architectures

for the construction of reliable multicast congestion con-

trol schemes. We have identified the three main architec-

tural elements as the mechanism for feedback consolida-

tion, the mechanism for RTT estimation and the mech-

anism for loss detection and timeouts. We have shown

how each of these mechanisms can be implemented un-

der different scenarios determined by the choice of the

regulation parameter and the feedback topology.

For estimating round-trip times, we have presented

two algorithms that are scalable and do not require the

sender and receiver clocks to be synchronized. Of the

three feedback topologies that we have discussed, RTT

estimation works best for a tree-based topology. While

it is difficult (if not impossible) to estimate round-trip

times in the broadcast-based case without some form of

clock synchronization, we are able to do so in the hop-

scoped case by superimposing a hierarchical structure

(similar to a tree) on the hop-scoped feedback topol-

ogy. The main lesson here is that if RTTs have to be

estimated in a scalable manner without using clock syn-

chronization, the receivers in a multicast group must be

organized in some form of hierarchy. The accuracy of

the estimated timeouts depends on how well-defined this

hierarchy is. Creating and maintaining such a hierar-

chy, however, has some overheads. The advantage of

14



broadcast-based schemes, at first glance, is that they do

not have any such overheads. However, such schemes re-

quire periodic exchange of session messages which can

also be used for estimating RTTs (among other things).

Such messages typically tend to be all-to-all broadcast

messages and may not scale well. An actual quantifi-

cation of the tradeoffs between the overheads of session

messages and the creation and maintenance of receiver

hierarchies is left as the subject of further study.

We have also studied techniques for feedback consol-

idation for both tree-based and broadcast-based topolo-

gies. In a tree-based feedback topology, scalable con-

solidation of feedback is readily possible for both rate-

based and window-based schemes. In contrast, in a

broadcast-based feedback topology a limited degree of

scalability can be achieved by using some form of feed-

back suppression. We have described two techniques

for feedback suppression: one technique exploits knowl-

edge about how the transmission rate is updated on

the receipt of feedbacks to suppress unnecessary feed-

backs. The second scheme is based on introducing

random feedback delays which depend on the value of

the feedback. We have shown that both of these tech-

niques are mainly applicable to rate-based congestion

control and have limited, if any, effectiveness in the

case of window-based congestion control. Thus, for a

broadcast-based topology, a limited degree of scalabil-

ity is possible only for rate-based congestion control,

whereas a tree-based topology provides completely scal-

ability of feedback consolidation for both rate-based and

window-based congestion control.

Finally, we have described schemes for detecting

losses as well as timeouts. Although the timeout mecha-

nisms that we describe are sender-based, they scale well

since they do not involve feedback from all receivers. A

more careful analysis of the tradeoffs between feedback

overhead and accuracy of timeouts is required in order

to determine the optimal feedback frequency.

To sum up, we can say that tree-based feedback

topologies show better scaling properties than broadcast-

based topologies. However, for small multicast group

sizes, broadcast-based topologies could also be used,

since the overheads of session messages in such cases

may not be excessive. It is our belief that the actual

choice may ultimately depend on the characteristics of

the application that will use the multicast service.

References

[BG98] A. Basu and S. J. Golestani. Estimation of receiver round
trip times in multicast communications. Technical re-

port, 1998. Presented at the meeting of Internet Reli-

able Multicast Research Group, Virginia, AR, Dec. 1998.

http://www.bell-labs.com/user/golestani/rtt.ps.

[Chi98] D. M. Chiu. Congestion control using dynamic rate and

window. Technical report, 1998. Presented at the meeting

of Internet Reliable Multicast Research Group, Arlington,

VA, Dec. 1998.

[FJM+95] S. Floyd, V. Jacobson, S. McCanne, C-G. Liu, and
L. Zhang. A reliable multicast framework for light weight

sessions and application level framing. InProc. ACM SIG-

COMM’95 Conf., pages 342–356, 1995.

[GS99] S. J. Golestani and K. Sabnani. Fundamental observations

on multicast congestion control in the internet. Into be

presented at Infocom’99, 1999. also see http://www.bell-

labs.com/user/jamal/index.htm l.

[HF98] M. Handley and S. Floyd. Strawman specification for TCP

friendly multicast congestion control. Technical report,

1998. Presented at the meeting of Internet Reliable Multi-
cast Research Group, Arlington, VA, Dec. 1998.

[LESZ98] C. Liu, D .Estrin, S. Shenker, and L .Zhang. Lo-

cal error recovery in SRM: Comparison of two ap-

proaches.Submitted to IEEE Transactions on Networking.

http://catarina.usc.edu/estrin/papers/infocom98/local.ps.

[PFTK98] J. Padhye, V .Firoiu, D .Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-

tion. In Proc. ACM SIGCOMM’98 Conf., pages 303–314,

1998.

[PSLB97] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya.

Reliable multicast transport protocol.IEEE Journal on

Selected Areas in Communications, 15(3):407–421, April

1997.

[Rhe98] I. Rhee et al Rate-based fair multicast congestion control.

Technical report, 1998. Presented at the meeting of In-
ternet Reliable Multicast Research Group, Arlington, VA,

Dec. 1998.

[RVC98] L. Rizzo, L. Vicisano, and J. Crowcroft. TCP-like conges-

tion control for layered multicast data transfer. InIEEE

INFOCOM’98, the Conference on Computer Communica-

tion, San Francisco, USA, March 29–April, 1998, 1998.

[WC98] B. Whetten and J. Conian. A rate based congestion

control scheme for reliable multicast. Technical report,

1998. Presented at the meeting of Internet Reliable

Multicast Research Group, Arlington, VA, Dec. 1998.
http://www.gcast.com/docs/RateBasedCongestionControl.PDF.

15


