
1

Gated Compression:

An Application-Specific Technique for Achieving High Degrees of Video Compression

J. Duane Northcutt and James G. Hanko
Sun Microsystems Laboratories

2600 Casey Avenue
Mountain View, CA 94303

Abstract
There exists a class of interesting video applications that

generate large volumes of data, and for which existing video
compression techniques alone do not reduce the data to a
manageable amount. Examples of this type of application
include a wide range of video monitoring applications which
use stationary video cameras (e.g., facility security cameras,
video monitoring of manufacturing processes, etc.). This
paper presents a new compression technique for just such a
class of video applications, that can provide compression
ratios of on the order of 5000:1 and are realizable with
extremely low implementation costs.

This new technique, known as “gated compression,” works
in conjunction with standard video compression techniques
and provides an additional level of compression by suppress-
ing (or “gating”) the compressed video stream. This tech-
nique involves the detection, in real-time, of when a newly
compressed field of video does not differ significantly from the
previously transmitted video field, and simply discarding the
field.

This compression scheme also lends itself readily to the
inclusion of a rate-limiting function. Rate limiting can be used
to ensure that the resulting data stream does not exceed a
specified storage limit over a given interval of time. Effective
rate-limiting is accomplished by applying a modulation func-
tion to the on/off gating of the compressed video stream.

This paper defines the key principles of the gated compres-
sion technique, describes an Internet-based hardware imple-
mentation of this compression scheme, and presents some
empirical results to illustrate the effectiveness of this
approach.

Keywords
Audio and Video Compression, Special Hardware Devices

I. Introduction

There exist many video applications that continually gen-
erate enormous quantities of video data which contains very
low information content and is sparsely distributed. This class
of applications is characterized by (typically) having a set of
fixed-mount video cameras, “staring” at an occasionally vary-
ing scene. Examples of this type of application include video
monitoring applications such as traffic observation, building
security surveillance, manufacturing process monitoring, etc.
These “staring” video applications emit huge amounts of data
that presents a storage problem, as well as a problem in locat-

ing data of interest. For example, a single video camera gener-
ates nearly 2TB of raw digital (YUV422 format[8]) video in
the course of a day. Even if compression schemes are used that
offer compression ratios of 100:1, this volume of data is diffi-
cult and costly to transmit, store, and retrieve[4] — and this is
all made that much worse by having to deal with multiple
video sources in a given application.

The technology described in this paper provides a practical
means of compressing this type of video stream with compres-
sion ratios that are orders of magnitude greater than is possible
through traditional video compression approaches alone. In
addition to reducing the required storage space for the
acquired video data, this compression method also assists in
the automatic identification of significant events within the
video data set.

This is made possible by the fact that the video data gener-
ated by these applications contains tremendous amounts of
temporal redundancy — the cameras are focussed on the same
scene for long periods of time, and punctuated with only brief
intervals of something interesting happening. Traditional digi-
tal video compression techniques (such as MPEG[2]) attempt
to minimize the amount of data that is generated from these
largely unchanging scenes. However, they still generate
unmanageably large amounts of data with this class of appli-
cation. For example, an MPEG1 video stream of a constant
scene representative of a security video camera’s view gener-
ates a constant data rate of over 16GB of data per day.

A. Overview of Gated Compression

Gated compression is a technique which takes advantage
of the characteristics of some of this class of applications in
order to achieve a multiplicative increase in compression ratio
over that offered by other video compression techniques. In
the example implementation described in this paper, the data
rate for a single surveillance video camera is reduced to a
maximum of 1GB per day, and some selected minimum value
(e.g., 500KB per day). The actual amount of data generated by
a given camera is, of course, a function of the activity which
occurs in the camera’s field of view. It is shown in this paper
that an average camera in the experiments described below
generated approximately 300MB of data per day, providing an
effective compression ratio of over 5000:1, without loss of
significant data.

The gated video compressor only emits compressed video
fields when a particular field is significantly different from the
last field it has emitted. This means that the gated compressor



2

goes silent whenever a series of fields that do not differ signif-
icantly are detected, and runs at full video capture rate when-
ever the observed scene is changing.

The key concept behind this form of compression is the
detection of “significant” changes between each captured
video field and a selected reference field. This field difference
information is used to enable (or “gate”) on and off a stream
of compressed versions of the input video fields.

Figure 1 Diagram of a Gated Video Compression Scheme

As shown in the figure above, the main flow of data
through a gated compressor is from the digitizer/decoder unit,
to a standard video compression unit, and then on through the
gating mechanism which determines whether each individual
field of compressed video is emitted by the compressor, or dis-
carded. The gating logic operates in parallel with the digitiza-
tion and compression of the video signal, and is the function
which determines which fields pass the gate, and which are
suppressed by the gating mechanism.

The gating logic contains a mechanism that calculates the
(weighted) difference between the current incoming video
field and a stored reference field. At the end of each incoming
field, the gating policy module evaluates the accumulated dif-
ference information and decides whether the most recently
compressed field should be transmitted or dropped. Should the
gating policy determine that the incoming field is sufficiently
different from the reference, the gate is opened and the com-
pressed field is passed on to the next phase in the video pipe-
line (e.g., to networking code where it is encapsulated and sent
over the network, or to a file where it is stored). Also at the
end of each video field time, a new reference field may be cho-
sen according to a defined policy.

In addition to all of this, a rate limiting module monitors
the cumulative volume of data being generated by the com-
pressor and signals the gating policy to inhibit the production
of fields that it would ordinarily have allowed to be emitted, in
order to enforce a given maximum data rate over a given inter-
val of time.

There are many different policy decisions that are applied
to the mechanisms of a gated compressor in a specific imple-
mentation. These may include a number of parameters which
define exactly what constitutes a “significant” change in the

video signal, and exactly how the decision to transmit a field is
made. The following sections describe some of the policies
which have been shown to be effective in an example imple-
mentation of a network appliance which incorporates an
implementation of a gated video compressor.

II. Details of the Technique

The heart of this compression technique lies within the
gating logic function shown in Figure 1. This functional unit
which determines when an incoming field is worth passing on
to the next stage in the system. In effect, the gating logic is
performing a simplified form of motion detection on a live
video stream, and generating a control signal which is active
whenever motion is detected within the incoming video
stream.

Figure 2 Detailed Block Diagram of the Gating Logic Component

The function of each of the main components illustrated in
Figure 2 is described below, along with the technical motiva-
tions behind some of the more significant design decisions
relating to each of the functions.

A. Video Digitization and Decoding

The first stage of a gated video compressor is where the
analog video signal is digitized and decoded. The decoder
emits a serial digital data stream that is comprised of a sub-
channel of luminance information, along with another sub-
channel containing the video signal’s chrominance informa-
tion. In addition, the decoder emits a series of control signals
which provide pixel, scan-line, field, and frame timing infor-
mation. This timing information is used to synchronize the
various sub-sections of the compressor.

Although the decoder passed on all of its output informa-
tion to the standard video compressor in the next stage of the
gated compressor, it is possible to pass only the luma portion
of the video signal to the gating mechanism. By operating
only on the luma portion of each video pixel, the cost and
complexity of a gated compression unit can be reduced signif-
icantly over that required if the full color signal were pro-
cessed. This optimization can be performed when color

Memory

A/D &
Decode

Differencing
Mechanism

Gating Logic

Gating
Policy

Gating
Mechanism

Compress

Differencer

Rate Limiting
Policy

Analog
Video
Input

Compressed
Video
Output

PIXEL
WEIGHTS

DIGITIZER/

DECODER

BINARY
THRESHOLD

CURRENT
REFERENCE

FRAME

NEXT
REFERENCE

FRAME

DIFFERENCE
COUNTER

PIXEL
DIFFERENCER

PIXEL
ADDRESS

GENERATOR

NEW
REFERENCE

FRAME
SELECTOR

ADAPTIVE
MOTION
FLOOR

COMPUTATION

MOTION
DETECTOR

RATE
LIMITER

Analog Video
Input

To Gating
MechanismTo Standard

Compressor



3

changes in the video input signal, in the absence of any
changes in the brightness of the signal, are not possible, or
deemed uninteresting. This corresponds well with the
response of the human visual system which perceives changes
in brightness much more readily than differences in color. It
should be noted that, while the gating logic may be disregard-
ing the video stream’s color information, the standard video
compressor would still operate on the full video signal. There-
fore, the output of the gated compressor would be in full color.
Thus, the use of luma information only in the gating logic sec-
tion would not necessarily diminish the effectiveness or func-
tionality of this compression scheme. Throughout the
remainder of this description it is assumed that the gating
logic is operating on luma values only.

B. Serial Pixel Differencing

The first stage in the gating logic function involves the
comparison of the incoming video field with the reference
field. As each pixel digitized it is compared to the pixel corre-
sponding to it in the current reference field. This comparison
determines the numeric difference between these two pixels.
In the ideal case where a video scene is not changing, the
value of each pixel at the same location within a video field
should have the same value across successive fields. However,
this is not true in practice as the sensors and transport paths in
video cameras are subject to the injection of noise. This means
that even when a scene does not change, the value of pixels at
any given location in the video field will change from field to
field.

The degree of variation in pixel value which occurs from
field to field due to noise has been found to be well-defined
and consistent (across individual video cameras of moderate
to high quality). Therefore, a thresholding mechanism must be
applied to the field-to-field pixel differences in order to deal
with the effects of pixel noise.

In this compression scheme, this thresholding is accom-
plished by taking the absolute value of the difference between
an incoming pixel and its reference pixel, and comparing it
with a given threshold value. If this difference is greater than
the threshold, the variance cannot be attributed solely to noise
and so the incoming pixel is considered to be significantly dif-
ferent from its reference value.

Taking the absolute value of the pixel differences has the
effect of making sure that it does not matter whether the
incoming pixel is brighter or darker than its reference pixel,
but only the magnitude of the difference between pixels is
considered in the comparison operation.

The output of the per-pixel differencing unit is a binary
signal that indicates whether the current incoming pixel is sig-
nificantly different from its reference value. This binary
stream is sent on to the motion detection unit which is
described below.

An augmentation may be made to this basic pixel thresh-
olding mechanism by using different threshold values for each
pixel position. This has the effect of allowing each pixel posi-
tion to be made more or less sensitive to variations.

In this way, the compressor can be made to be less sensi-
tive to changes in some areas within the field of view, and
more sensitive to other areas. This could be useful when an
area with a continuously moving object (e.g., a clock or a fan)
exists. In such a case, the sensitivity within this area could be
attenuated. Similarly, some areas (e.g., a consistently lit door,
desk top, or assembly line) could be defined to have a hyper-
sensitivity to change. An image editing interface can be used
to specify the regions that should be more or less sensitive to
change in pixel values, the output of which can be loaded into
an array of pixel threshold weights. These weights define the
degree of change required before a given pixel can be deemed
to have changed.

C. Significant Video Field Change Detection

The motion detection unit determines whether sufficiently
large numbers of pixels differ from their corresponding values
in the reference field to result in an indication that the incom-
ing video field has changed. This is done by maintaining a
count of the number of different pixels for each field of incom-
ing video, and comparing this count with another threshold
value. In an overly simplistic example, a significant field could
be identified if more thanN of the M pixels in the incoming
field are considered different from those in the reference field.
While this approach could be used with a gated compressor,
such a scheme would suffer from a number of deficiencies
which would degrade the effectiveness of the compressor.

The use of a constant pixel threshold would result in a
compressor that would have a constant level of sensitivity to
change in the video field of view. This would be mean that the
unit would behave the same regardless of whether the scene
has been static, or varying over a recent past interval of time,
resulting in the same number of fields being captured during
periods of sustained activity as during isolated events. This is
undesirable when the application wishes to record more fields
during a sporadic event, and less during sustained periods of
activity.

A better approach is one where the unit is able to detect
when the current “ambient” level of change is high and desen-
sitize the motion detector in proportion to the amount of
change in video frames that is currently being observed. This
can be done in a particularly effective manner by computing
the average motion over a recently passed interval of time and
defining a field to be significant when it’s number of changed
pixels differs from the average by a given amount (as opposed
to when it exceeds a fixed value). It is possible to maintain an
effective average of recent per-field cumulative pixel differ-
ence counts, without having to maintain a long history and
perform a sliding window average over these values.

A trailing exponential average function such as that given
in Equation 1 can be used to generate the average number of
pixels which are changing within a field over time. The result
is an average where previous field’s values contribute succes-
sively less to the current average. This provides a good
approximation to a sliding window average, at a much lower
cost, and much simpler implementation.



4

ai =( α∗ai-1 )+((1- α)∗xi ) Equation 1

One problem with any sort of averaging calculation like
this is that it is effectively a low-pass filter, which suffer from
a problem known as phase lag — i.e., the value of the com-
puted average lags behind that of the actual value. The effect
of this phase lag is a reaction time “shadow,” where the sud-
den drop off in actual activity leaves the compressor exces-
sively insensitive to smaller changes in motion. This could
allow the unit to fail to detect significant motion following a
sustained period of higher motion.

This problem can be dealt with by building into the adap-
tive activity detection function an asymmetric response to
changes in the amount of motion being observed. In particular,
when the difference count for a field is significantly less than
the current average, the current value is weighted more in the
average. This has the effect of bringing the average value
down quicker, thereby reducing the sensitivity “shadow” area,
and making the compressor more adaptive to different situa-
tions. In effect, this detects the video signal’s noise floor —
i.e., the average of the recent least changing frames.

D. Reference Field Selection

In many applications of this type of compressor, it is
important that changes in lighting not be confused with
motion or some other significant change in the scene being
monitored. The ability of the compressor to distinguish signif-
icant motion from other artifacts depends greatly on the policy
used to choose the reference fields.

At the end of each video field time — and in parallel with
the determination of whether the compressed field is to be
emitted — a decision is made as to whether the current refer-
ence field is to be updated with the newly arrived field. A sim-
plistic reference frame selection policy would have each
incoming field serve as the reference field for the subsequent
input field. However, the use of this policy has the effect of
making the gating logic unable to detect very slow moving
objects. Another policy might choose a new reference field
periodically (e.g., everyNth frame). Unfortunately, this too
has the effect of not being able to detect small changes which
occur over time. While this might be a desirable property for
some applications, another policy might suit other applica-
tions better. In particular, a policy which chooses the reference
frame to be the last field of video which was captured prior to
the video being gated off is particularly useful. With this pol-
icy, the motion effects of slow moving objects will accumulate
as the incoming pixels gradually diverge from their reference
pixels, eventually causing a significant field event to be trig-
gered.

Regardless of the specific reference field selection policy
that is chosen, it is important to take into account the specific
fields being compared in making the gating determination. If
care is not taken in the choice of fields being compared, it is
possible for a source of apparent, but false, change can be
introduced in the field comparison process. This is due to the
phase alternation of chrominance information in standard

video coding formats. This phase alternation is useful in the
analog domain, but introduces an artificial shift in the value of
a given pixel location from field to field. An effort must be
made to ensure that comparisons are only done between
incoming video fields which belong to the same phase group
as the reference field.

E. Cumulative Data Rate Limiting

Another mechanism which is used to great advantage with
this compression scheme is the data volume limiter function.
This mechanism is used to ensure that the effective data rate of
the device does not exceed a given amount over some period
of time. This function is particularly useful for ensuring that
devices which use gated compression do not overload a net-
work, or to ensure that storage space is not exceeded in the
event that the output of a device is being recorded.

This mechanism keeps track of the number of bytes which
have been sent by the device over some past period of time. In
addition, the mechanism has user-definable parameters which
indicate the maximum amount of data which can be sent over
a given interval of time. The rate controlling unit monitors the
device’s history of data transmission and projects forward in
time to determine whether the current data rate needs to be
reduced in order to meet the overall data production restric-
tions.

The rate limiting mechanism calculates a nominal rate for
the compressor as a whole, and uses that rate to determine if
additional fields should be discarded in order to reduce the
unit’s total output of data. For example, if the device’s param-
eters are set so that it is not to generate more than 50MB per
hour, the nominal rate over that hour is roughly 7Mbps. At the
beginning of a period of activity there is plenty of budget, so
no attempt is made to limit the rate and bursts of traffic greater
than the nominal rate are allowed. However, the rate limiting
mechanism keeps track of what has been sent and as time goes
on, if the amount of data sent exceeds the nominal rate, the
rate limiter will instruct the gating mechanism to suppress
additional fields until the nominal rate is achieved. After a
prolonged burst of traffic above the nominal level, the rate
limiter will cause fields to be dropped in a dithering-like fash-
ion (i.e., with an irregular duty-cycle) so that the effective data
rate will remain at or below the nominal level, but large
groups of consecutive fields are not discarded. In addition,
when fields are being dropped for rate control purposes, the
reference field is not changed, so that the next field allowed
under the rate-control will show a significant difference.

III. An Example Implementation

To validate the viability and explore the effectiveness of
the gated video compression described here, a video Internet
appliance known as the NetCam was created. A photo of an
actual NetCam unit can be seen in Figure 3.

The NetCam is a small, self-contained unit, which acts as a
full network citizen, abiding by all the conventions and operat-
ing with all the standard protocols which define a host device



5

on an Intranet or on the greater Internet. NetCam connects to a
source of power and then directly to the network and has no
switches, jumpers, or external displays — it simply plugs into
the network as if it were a household appliance.

Figure 3 Photograph of the NetCam Internet Video Appliance

Multiple instances of the NetCam can be connected with
off-the-shelf computer networking hardware to create digital
versions of the traditional analog closed circuit television sys-
tems. In addition, these devices can coexist with computer
systems on a (TCP/IP-based) local area network (such as
Ethernet), or on the larger Internet. This device includes sup-
port for configuration via DHCP, ICMP message handling,
address resolution with ARP and RARP protocols, sending
and receiving of IP, UDP, and TCP packets, as well as trans-
fers between files on a remote host and its local memory by
way of the TFTP protocol. Most significantly however, this
device can send and receive digital audio and compressed dig-
ital video using the Internet standard RTP and RTCP proto-
cols[6], as well as being able to use IP multicast protocols.
The use of multicast RTP-encapsulated motion JPEG
(MJPEG) and audio was popularized on the MBONE[5]— the
experimental Multicast Backbone of the Internet. This device
interoperates with a number of applications written for use
with these standards — e.g., it can be used to send audio and
video data to the popular “vic” and “vat” video teleconferenc-
ing software[7], as well as the ShowMeTV product from Sun
Microsystems.

While the RTP/RTCP protocols have been specified to
work with other forms of video coding, such as MPEG,
Motion JPEG is a better choice for most applications. While
MPEG can provide higher compression ratios than motion
JPEG, it suffers when run on a computer communications net-
work with the possibility of congestion-based packet loss.
MPEG is not well suited for use with unreliable or datagram-
based protocols. This is because the loss of a single packet of
an MPEG stream could result in the loss of an entire Group of
Pictures (GOP), which could be tens of frames of video. With
MJPEG, it is possible to lose a packet (and perform very sim-
ple error concealment) and not lose even one frame of video.
Another benefit of the use of MJPEG over MPEG is that
MJPEG encoding is significantly simpler and cheaper to
encode and decode than MPEG encoding. This allows the

NetCam to operate at full video frame capture rate and still be
a small, low-cost, and low-power device.

A. Overview of NetCam Hardware

The key functional specifications for the NetCam hard-
ware include:

• multi-format video digitizer (PAL/NTSC)
• full-frame rate MJPEG video compression
• single channel digitizer of microphone or line-level

audio at standard sampling depths (e.g., 8 or 16 bits per
sample) and rates (e.g., 8KHz, 32KHz, 44.1KHz,
48KHz, etc.)

• full-/half-duplex 10/100Mbps Ethernet interface
• hardware support for gated video compression
• less than 15W total power consumption
• less than 300cc total volume
• 24VAC external transformer, on-board power supply
• 512KB boot PROM
• 512KB FLASH
• 8MB DRAM

The NetCam hardware was designed to be highly flexible
and a modular design approach was taken where each major
function is implemented on a roughly 3”x3” printed circuit
board. The boards which make up the NetCam are: the CPU
board, the 10/100Mbps Ethernet board, the audio codec board,
the video digitizer/compressor board, and the power supply
board. These boards and their external connectors are shown
in Figure 4.

Figure 4 The NetCam Front Panel Connectors

This modular construction makes it possible to replace any
of the major components with a minimal amount of effort. It is
possible to easily exchange the Motion JPEG compression
unit with an MPEG compression board should it be so desired.
It is also possible to swap out the network interface board and
have the device work with any number of different network
types, as opposed to just Ethernet — e.g., Token Ring, ATM,
etc. Likewise, the processor module can be replaced with a
different type of CPU. The firmware is similarly modular in
that there is very little effort involved in changing the specific
implementation of any of the major components.

Power Supply

Audio Board

Video Board

Ethernet Board

Processor Board

Power

Composite
Video Input

S-Video
Input

24VAC Input

Line In Mic In Speaker Out

RS232 10/100Mbps
Ethernet

LED

1-XMIT
2-100/10
3-H/F DPLX
4-LINK UP1 2 3 4

+ +- -



6

In order for this device to be a simple, self-contained,
stand-alone appliance, yet be able to function in a fully gen-
eral Internet environment, it is required that all of the neces-
sary settings and parameter changes be remotely controllable
across the network. The NetCam allows all of the internal set-
tings to be read and written over the network, instead of
requiring the device be connected to a control panel, or exter-
nal computer in order to change the unit’s parameters. In addi-
tion, all administration and update functions are available over
the network as well. An initial set of configuration values are
placed in the CPU board’s flash memory when the system is
first installed, and then all subsequent changes to the configu-
ration values of the unit can be done over the Internet. For true
unattended remote operation, in addition to all this, the unit
must be able to automatically detect and recover from failures.
The NetCam does this with a watchdog timer which must be
successfully reset periodically or the system will restart itself.
Also, the device automatically resets and restarts itself follow-
ing any power failure or other exception condition. As an
additional security feature, the NetCam periodically emits a
keep-alive message that indicates whether a valid video input
signal is present.

A diagram illustrating the main components on each of the
NetCam boards is given in Figure 5.

Figure 5 NetCam Hardware Block Diagram

B. NetCam Software Features

The major software components within the NetCam
include the PROM-resident monitor, the executive and the
application program. An overview of the key features of each
of these components is provided below.

The PROM monitor in the NetCam provides the following
functions:

• peek/poke registers, i/o, and memory locations
• download (S-Records) over serial line
• manipulate simple flash file system
• start/stop program execution

The NetCam’s real-time executive includes the following
functionality:

• threads — enables preemptive multitasking in single
and multiple processor systems

• mutexes — synchronize thread access to resources
• message queues — enables inter-thread communica-

tions
• memory management — supports allocation and free-

ing of memory
• real-time support — provides priority scheduling with

full preemption and priority inheritance to ensure criti-
cal tasks are handled in a timely manner

• device driver architecture — handles low-level interrupt
processing, etc.

• drivers implemented for Ethernet, serial port,
clock, and video and audio subsystems

• debugging support — trap handling with symbolic
back-trace, thread profiling, assertions

• application support, including:
• libc functions: printf, sprintf, memset, bcopy,

bzero, memcpy, strlen, and memcmp

• packet-filter-based network protocol stack, including:
• ARP/RARP, ICMP, DHCP, IP, UDP, TCP, TFTP,

and RTP/RTCP

Each NetCam unit is initialized to contain the following
set of application programs pre-loaded in the simple flash file
system:

• netconfig — a network parameter configuration tool
• tftp — an implementation of the trivial file transfer pro-

tocol
• netcam— the audio/video transmitter application pro-

gram

IV. Experimental Results

A prototype Java-based distributed security video applica-
tion was created (in cooperation with Sun’s Corporate Secu-
rity group) to explore the effectiveness of the NetCam and its
implementation of gated video compression. This application
was designed as a prototype for a network-based digital
replacement for the functionality currently being provided by
a traditional analog camera and coaxial cable distribution sys-
tem.

A. An Example Corporate Security Video System

The existing analog security video system is a fairly typi-
cal installation with analog video cameras monitoring all of
the entrances and exits of each building. A typical building
has between 6 and 12 security video cameras. The video from
each group of buildings is transported to a central collecting
site where it is recorded and stored. The output from each
camera is recorded in a time-lapse fashion, at between one and
five frames per second, on a dedicated (industrial-grade) video
recorder.

CPU Board

ELAN310 DRAM
CPU

PROM

Flash

(AMD)

TTY Ports

Ethernet Board

FEAST
SRAM

10/100

PHY

Flash

(SMC)

Ethernet

Audio Board

AD1845
Audio

Mic.

(AD)

Codec

Headphones

Line
I/O

MJPEG
Video

(Zoran)

Compress

PLD
Video

(Xilinx)

Difference

SAA7110
Video

(Philips)

Decoder

FRAMSRAM

CVBS SVideo

Video Input Board

Ethernet

MJPEG
Video

(Zoran)

Decompress

SAA7199
Video

(Philips)

Encoder

SRAM

CVBS SVideo

Video Output Board
(Optional)



7

A full-time security staff exists to change video tapes,
maintain the cameras, the video distribution network, and the
video recorders. The security staff is responsible for retrieving
and reviewing recordings as part of security investigations, as
well as monitoring the video from selected cameras in real
time.

This sort of installation is clearly quite costly both in terms
of the amount of equipment required, as well as the manpower
costs required by such a system. While this may represent the
current state of the art in video security systems, it leaves
much to be desired in terms of both cost and effectiveness.
The sheer number of video feeds that must be provided to sup-
port a campus with a dozen buildings, each of which having a
dozen cameras, presents a serious management problem. In
practice, the ability to provide investigators with useful infor-
mation is limited both by the technical limits of this kind of
system and the limits of a highly human-interaction-intensive
process. It has been reported that it takes approximately one
hour of investigator time for each hour of recorded video
reviewed[9].

Clearly, an opportunity exists to provide improved effec-
tiveness, at substantially lower cost, with a digital solution.
However, a examination of the quantity of video that must be
handled leads quickly to the conclusion that existing compres-
sion techniques are not up to the task. This is an example of
where the NetCam and gated video compression can provide a
superior solution.

B. A NetCam-Based Security Video Application

A prototype NetCam-based security video application was
created, and is illustrated in Figure 6. In this system, a Net-
Cam unit is paired with each of the existing security cameras
in a set of buildings, and connected to a private local-area sub-
network. The video is collected at a server which archives the
data to tape. This archive server is connected to both the pri-
vate security video subnet and the campus backbone network.
The archive server maintains a recording of the camera out-
puts over a given interval of time and behaves much like a
video FIFO where each hour the oldest hour of video from
each camera is replaced with the most recent hour’s video.

The archive server not only records the video emitted from
all of the connected NetCams, but also responds to requests to
playback stored video sequences. A Java-applet-based web
application is provided to allow the security staff to recall the
video for a given building and camera, for a defined interval of
time, from any place on the network.

In addition, the fact that the RTP encapsulated video from
the NetCams is being multicast allows multiple simultaneous
listeners to be active on each video stream. For example, the
archive server’s recording process, a monitoring process that
generates an alarm when a camera goes away, and any number
of live viewing applications could all be monitoring the output
of a given camera’s NetCam.

Figure 6 The Prototype NetCam-Based Security Video Application

C. Measurements from the Prototype System

The results of this initial experimental use of the NetCam
demonstrate the overall effectiveness of both the gated com-
pression and rate limiting techniques described above. These
measurements demonstrate that there is great opportunity to
exploit the advantages of gated compression, and the combi-
nation of gating and rate-limiting provides an effective means
of reducing continuous video streams to manageable levels.

The highly regular and stylized traffic patterns which are
typical of this application domain can be seen clearly in the
graph shown in Figure 7. This graph shows the number of
frames captured by a representative camera, for each hour of
the day, over a four week period. The activity patterns of a
common office building can be seen both within the daily
cycle of activity which begins with the cleaning staff working
around midnight, progresses to a quiet period leading up to the
arrival of the building occupants in the morning, then ramping
up to a sustained level of activity throughout the day, and then
ramping down to another quiet period at the end of the day. In
addition to this daily cycle of activity, the relative lack of
activity during weekends is also evident in this graph. This
data illustrates how periods of inactivity in the observed envi-
ronment translate into natural opportunities for compression
of the video stream. Whereas without the use of gated com-
pression (and rate limiting), a video camera would capture
over 200,000 fields of video per hour, the example shown in
Figure 7 captures a maximum of less than 4,000 fields of
video (and averages less than 1,000 fields) per hour. This
behavior provides an additional two orders of magnitude in
compression over whatever other video compression tech-
nique is used with the gating method.

The plots given in Figure 8 indicate that each of the exam-
ple building’s NetCams emit video fields with the same char-
acteristic envelope. This is somewhat unexpected as the
cameras are focussed on different entrances to the building,
with obviously different usage patterns. These measurements
reinforce the notion that a significant opportunity for gating
video off exists within security video applications, regardless
of the specific scene being monitored.

Building #1 Building #2

Video Cameras + NetCams Video Cameras + NetCams

Video Archive Server

Security

Live Viewing

Archive Retrieval

Status Monitoring
Subnet

Campus
Network



8

Figure 7 Video Fields Emitted from a Single NetCam Over a Month

The effectiveness of the NetCam’s gating and rate-limiting
functions can be seen in the plot given in . This graph shows
the number of bytes of data emitted by a representative Net-
Cam over the course of a ten week period. Both the represen-
tative daily and weekly characteristics are reflected in this
graph. In this example, the subject NetCam was configured to
limit its output to less than 1GB per day. The cumulative data
volume over the given period was measured to be 78GB, with
an average of 46MB/hour, a minimum of 600KB/hour, and a
maximum of 146MB/hour.

Figure 8 A Month’s Average Daily Output of From Three NetCams

A measure of the degree to which the gating and rate-lim-
iting mechanisms distribute the sampling of a video stream
can be seen in the distribution of field capture times. An illus-
tration of this for a representative NetCam is shown in Figure
10. In this plot, the approximately 800 frames captured during
the hour interval shown are fairly well distributed over time.
There is only one instance where the maximum of 30 frames
is captured during a one second interval, and there was, on
average, less than four frames captured during each second
where activity was detected by the NetCam

.

Figure 9 Amount of Data Emitted by a NetCam Over Nine Weeks

Finally, to put these figures in perspective, Table 1 is given
which illustrates the storage required per camera for raw
(YUV422 format[8]) video, MJPEG[1] and MPEG[2] com-
pressed video, and gated motion-JPEG video.

Figure 10 Distribution of Fields Captured Over a One Hour Period

Table 1 Volume of Video Data Output Over a Given Interval of Time

0

5

10

15

20

25

0
5

10
15

20
25

30

0

2000

4000

Hour

Day

F
ra

m
es

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

Hour

F
ra

m
es

422YUV
(1:1)

MJPEG
(50:1)

MPEG
(100:1)

Gated & Limited
MJPEG

(2000:1 worst case)
second 20 MB 400 KB 200KB 11 KB (avg.)
minute 1.2 GB 24 MB 12 MB 667 KB (avg.)
hour 72 GB 1.4 GB 720 MB 40 MB (limit)
day 1.7 TB 34.6 GB 18 GB 1 GB (max.)

week 12 TB 242 GB 126 GB 7 GB (max.)
month 52 TB 1 TB 540 GB 30 GB (max.)

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15
x 10

7

Hours

M
eg

aB
yt

es

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

Seconds

F
ra

m
es



9

V. Alternative Solutions

Although a number of other techniques have been devel-
oped to detect motion in real-time video streams, each of these
techniques suffers from one sort of deficiency or another.

One general class of techniques employs a variety of dif-
ferent adjunct means of detecting motion — i.e., by emitting
or detecting some form of energy other than that in the visual
spectrum (e.g., microwave, infrared, etc.). Typically in such
systems, the adjunct detection system is used to switch a video
camera or recording device on and off. These techniques tend
to be less reliable and easier to detect and defeat than tech-
niques based solely on the use of the information contained in
the video stream itself.

The video-only techniques can be classified into those
which operate in the analog domain and those which operate
in the digital domain. A number of simplistic analog
approaches have been employed (e.g., such as placing photo-
cells on a television monitor) with less than the desired level
of effectiveness. Analog techniques such as detecting changes
in light values using one-shot timers to sample fixed locations
in the video signal, or sampling fixed regions of the video sig-
nal and comparing against preset values, have been used to
detect motion in video. Other analog techniques filter or inte-
grate the incoming video signal and look for gross changes in
the signal’s characteristics to detect motion. These approaches
tend to be inexpensive, but also provide poor results as they
are dealing with some adulterated (and simplified) version of
the video signal which discards the bulk of the information
content of the signal. Working with a signal with so little
information content, the best that can be achieved is a rough
approximation that motion has occurred in the scene when the
incoming signal changes in a particular way.

All of these analog techniques tend to be imprecise in what
they measure and so have inherent limitations in the degree of
sensitivity that they can have to actual motion, as well as being
susceptible to false triggers. Digital techniques tend to be
much better at reducing both false positive (i.e., detecting
motion when there is none) and false negative (not detection
motion when it exists) motion detection outputs. The digital
approach has the property of being able to repeatably associ-
ate a numerical value with a physical portion of the video
camera’s field of view. This ability to quantify the light com-
ing from an area in space makes it possible to more accurately
determine when motion occur in the scene being observed
than can be done by analog means.

Most digital continuous monitoring video systems tend to
be variants of time-lapse video approaches, all of which are
based on the assumption is that it is not practical to store all of
the data, and it is not possible to know when something inter-
esting is happening. Thus, they greatly reduce the capture
frame rate (e.g., to one frame a second) and capture samples
uniformly distributed in time. This approach is not very effec-
tive due to the fact that events of interest tend to be bursty and
the sampling is done uniformly in time. The captured video
still contains the same density of information of interest, how-
ever there are far fewer frames which contain the events of

interest, and there is no indication of where these interesting
frames appear within the captured data set.

A better approach would be to reduce the frame capture
rate to as close to zero as possible during periods when the
scene being monitored is unchanging, and then capture at full
rate when something interest occurs. In this way, an equivalent
number of frames might be captured, but the capture times are
made to correspond with the times when events of interest
occur. An additional benefit of this idealized approach is the
reduction in uninteresting frames within the data set, which
aids in the process of locating specific events of interest.

Other attempts have been made at determining when inter-
esting events are occurring based purely on the contents of the
video stream. The most promising, image-processing-based,
techniques tend to be extremely hardware-intensive, and
therefore too expensive for many applications. At the very
extreme high end of the spectrum of approaches, many image
processing techniques have been developed which automati-
cally segment a video image into regions of pixels which cor-
respond to objects in the camera’s field of view. The motion of
these object can then be detected, classified, and tracked[3].
These techniques are prohibitively expensive and rarely can be
made to run in real-time — i.e., they typically cannot be used
for digital video security applications.

Some digital techniques use the very computationally-
intensive approach to detect motion, which involves taking
regions (typically anNxM rectangle) of pixels from the incom-
ing video stream and correlating them with the pixels in a ref-
erence image. This approach can be thought of as an
approximation to the generalized image understanding
approach described above. In this case, the incoming image is
arbitrarily divided up into rectangles which are then compared
against (to be localized on) a reference image. This is consid-
erably simpler than trying to first segment the incoming image
into objects and then compare the new location of the object
against its location in the reference object. This technique is
used as part of the MPEG video compression standard and is
known as motion-estimation. While this approach can be quite
effective in detecting motion, it is also costly and time con-
suming. Sophisticated and costly custom integrated circuits
must be used to perform this kind of motion detection. Fur-
thermore, this approach tends to be quite sensitive the to the
quality of the incoming image; noise on the incoming video
signal makes it very difficult to locate given regions in a refer-
ence image. For all of these reasons, motion estimation tech-
niques have not been widely used for the types of applications
of interest here.

Other digital techniques for motion detection in security
video applications are based on the detection of edges in video
images — i.e., abrupt transitions in color or brightness which
serve delineate one region from another. This type of approach
simplifies the process by requiring only transitions be stored
and detected, as opposed to values of large numbers of pixels.
This takes advantage of the fact that there is a high degree of
correlation between pixels in a video image (i.e., large regions
of pixels tend to share similar values). These types of devices
tend to be very sensitive to false trigger events due to lighting



10

changes. A stationary scene may appear to move as the light-
ing changes the location of shadows in a scene over the course
of a day.

The majority of video motion detection techniques work
on the principle of comparing the incoming video signal to
some stored reference signal. Some devices are constrained to
only use the previous frame as a reference. While this has the
benefit of requiring less storage, is less sensitive to false trig-
ger events due to slowly changing lighting, and it lends itself
to a more simple implementation, it has the drawback of mak-
ing the system unable to detect slow rate of change events.
Ideally, a motion detection device could choose arbitrary
frames as the current reference frame. This way, reference
frames can be chosen periodically to adapt to changing light-
ing conditions, and also during a period where motion is
detected, to allow the system to adapt to differing degrees of
motion. This, in fact, is how the device being described here
operates.

In the digital domain, a common method for detecting
motion is to subtract the value of an incoming pixel from the
corresponding pixel in the reference frame and accumulate the
resulting difference and generate a motion indication should
the difference signal exceed some preset amount. Among the
shortcomings of this approach are the fact that the entire frame
is being differenced against a reference frame and the result is
accumulated to make the motion determination. This is a
problem in that changes over the whole image field can cancel
out, thereby giving a false reading. For example, a given pixel
could be brighter than its corresponding value in the reference
frame by amountN, and another pixel could be darker than its
reference value by -N. In such a case, the changes cancel out
and significant motion might not be detected.

In addition, the simple differencing of corresponding pix-
els is insufficient for an effective motion detector. At the very
least, the system must use the absolute value of the pixel dif-
ferences — i.e., a difference ofN is equivalent to a difference
of -N. Similarly, the magnitude of differences is significant.
The output of all video cameras have noise imposed upon the
video signal. This means that the value reported for a pixel of
an unchanging scene may vary plus and minus some amount
simply due to thermally induced noise. Most existing methods
do not compensate for this and so noise on the video signal
contributes to false positive responses as well as to the need to
desensitize motion detectors to the point where addition false
negatives are generated.

The NetCam described here uses both a pixel difference
threshold (which defines the degree (in absolute value) to
which a pixel must vary from it’s corresponding reference
pixel in order to be considered different), and a frame differ-
ence threshold (which defines the number of pixels which
must be different for a motion detection indication to be
given).

VI. Conclusions

This paper introduces a new application-specific video
compression technique that allows a compressed video stream
to be switched (or gated) off whenever the current video field
does not differ significantly from the last field sent. By (seri-
ally) performing per-pixel comparisons of incoming fields
with the most recently transmitted field, it is possible to deter-
mine if the new field contains new information which should
be sent, or whether the field is essentially the same and there-
fore need not be transmitted. This approach can result in an
increase in compression ratios, in addition to that given by the
native compression method, of a factor of 100 or more. In
video surveillance applications, the use of gated compression,
in conjunction with MJPEG compression, can yield an effec-
tive compression ration of over 5000:1.

It was noted that the video in many fixed-camera applica-
tions is highly redundant. In these cases, gated compression
ensures that these devices generate absolutely no network traf-
fic when there is no activity in the camera’s field of view.
However, when a significant event occurs, gating allows for
transmitting at full frame rate, allowing the capture of highly
detailed and complete video sequences, then returning to the
quiescent state when the event ends. This results in highly
bursty traffic from the devices, alternately transmitting at full
rate and being silent. It is possible with to set parameters
which define exactly how sensitive to differences in video
images such a device should be. In fact, it is possible to set the
gating mechanism’s parameters such that no gating is done at
all and every frame of video is passed through to the network.
In addition, a data-size limiting mechanism can be used in
conjunction with gating function to ensure that a video source
does not exceed a given amount of data in a period of time.

Gated compression can be effective even when used with
broadcast television sources. For example, in cases where 30
frame per second interlaced video has been converted from 24
frame per second film, a technique called “3-2 pull-down” is
used[8]. This duplicates one field two additional times fol-
lowed by the display of the next field, which is then duplicated
once (resulting in the following type of pattern:aaabbc-
ccdd...). When this type of video signal is presented to a
device that uses gated compression, the gating mechanism
removes the redundant fields and achieves an additional com-
pression factor of 60%, with no loss in video quality (as all
repeated fields are simply redisplays of the first field).

This paper describes a small, low-cost, Internet appliance
that implements the gated compression scheme and illustrates
the effectiveness of this approach in an example application.
This device uses digital processing techniques to quickly,
accurately, and inexpensively detect motion in video streams
captured by a video camera. This device is shown to be capa-
ble of detecting small amounts of motion in a scene, as well as
significant changes in motion in a constantly changing scene
(by dynamically adjusting its sensitivity to the current level of
background motion). The results of a series of experiments
were presented to illustrate the effectiveness of the gated com-
pression technique in an actual surveillance video application.



11

VII. Acknowledgments

The authors wish to thank the other members of the Sun
Labs Media Systems Group who contributed to the design and
implementation of the NetCam, including: Jerry Wall (firm-
ware and bringup), Alan Ruberg (RTP/RTCP), and Lawrence
Butcher and Marc Schneider (hardware).

Thanks is also due to Steve Kruschke of Sun’s Corporate
Security group for his contributions to the system require-
ments definition, and Ivan Sutherland of Sun Labs for sugges-
tions which contributed to the improvement of the gating
algorithm.

VIII. References

[1] W. B. Pennebaker and J. L. Mitchell.
JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, New York, 1993.

[2] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J.
LeGall.
MPEG Video Compression Standard.
Chapman and Hall, New York, 1997.

[3] J. O. Limb and J. A. Murphy.
“Measuring the Speed of Moving Objects from
Television Signals.”
IEEE Transactions on Communications, 23(4):474-
478, April 1975.

[4] I. H. Witten, A. M. Moffat, and T. C. Bell.
Managing Gigabytes.
Van Nostrand Reinhold, New York, 1995.

[5] M. R. Macedonia and D. P. Brutzman.
MBone Provides Audio and Video Across the Internet.
IEEE Computer, April 1994.

[6] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson.
RTP: A Transport Protocol for Real-Time
Applications.
Internet Engineering Task Force RFC 1889, January
1996.

[7] S. McCanne and V. Jacobson.
vic: A Flexible Framework for Packet Video.
Proceedings of ACM Multimedia, November 1995.

[8] K. Jack.
Video Demystified: A Handbook for the Digital
Engineer.
HighText, San Diego, 1996.

[9] S. Kruschke.
Personal Communications.


