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Abstract|As networked multimedia applications
become widespread, it becomes increasingly im-
portant to ensure that these applications can co-
exist with current TCP-based applications. The
TCP protocol is designed to reduce its sending rate
when congestion is detected. Networked multime-
dia applications should exhibit similar behavior, if
they wish to co-exist with TCP-based applications
[9]. Using TCP for multimedia applications is not
practical, since the protocol combines error con-
trol and congestion control, an appropriate com-
bination for non-real time reliable data transfer,
but inappropriate for loss-tolerant real time appli-
cations. In this paper we present a protocol that
operates by measuring loss rates and round trip
times and then uses them to set the transmission
rate to that which TCP would achieve under similar
conditions. The analysis in [13] is used to determine
this \TCP-friendly" rate. This protocol represents
a �rst step towards developing a comprehensive pro-
tocol for congestion control for time-sensitive mul-
timedia data streams. We evaluate the protocol
under various tra�c conditions, using simulations
and implementation. The simulations are used to
study the behavior of the protocol under controlled
conditions. The implementation and experimenta-
tion involve over 300 experiments over the Inter-
net, using several machines in the US and UK. Our
experimental and simulation results show that the
protocol is fair to TCP and to other sessions run-
ning TFRCP, and that the formula-based approach
to achieving TCP-friendliness is indeed practical.

I. Introduction

Networked multimedia applications usually employ
non-TCP protocols (usually UDP with some applica-
tion level control) to transmit continuous media (CM)
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data such as audio and video. As these applications
become widespread, it becomes increasingly impor-
tant to ensure that they are able to co-exist with each
other and with current TCP-based applications. A
key requirement of such a co-existence is the imple-
mentation of some form of congestion control that re-
sults in a reduction of transmission rate in the face of
network congestion. Many current CM applications
simply transmit data at the rate at which it was en-
coded, regardless of the congestion state of the net-
work.

Two major considerations come into play when de-
signing a congestion control protocol for CM appli-
cations. First, because these applications are both
loss-tolerant and time-sensitive, the transmission rate
might best be adapted in a manner that is cognizant
of the loss resilience and timing constraints of the ap-
plication [14, 18]. Second, since the applications must
co-exist with TCP-based applications, the congestion
control algorithms should adapt their rate in a way
that \fairly" shares congested bandwidth with TCP
applications. One de�nition of \fair" is that of TCP
\friendliness" [9] { if a non-TCP connection shares a
bottleneck link with TCP connections, traveling over
the same network path, then the non-TCP connec-
tion should receive the same share of bandwidth (i.e.,
achieve the same throughput) as a TCP connection.

To develop a comprehensive CM congestion con-
trol protocol, one can begin by designing a congestion
control protocol that sets the transmission rate in a
TCP-friendly manner. Once such a \strawman" or
baseline protocol is designed, it can then be modi�ed
to support the timeliness requirements of CM data,
perhaps with some loss of \friendliness." The design of
the \strawman" TCP-friendly protocol must be exi-
ble enough to allow such modi�cations. This require-
ment for exibility rules out the use of TCP itself as
the baseline protocol. The congestion control mech-



anisms of TCP are tightly coupled with the mecha-
nisms that provide reliable delivery, an appropriate
combination for non-real time reliable data transfer,
but inappropriate for loss-tolerant time-sensitive CM
applications. In this paper, we propose a simple base-
line TCP-friendly rate control protocol (TFRCP) that
does not couple error-recovery and congestion control,
and retains su�cient exibility for later modi�cations.

We present a congestion control algorithm that con-
trols the sending rate in a manner that is roughly
equivalent to that of TCP. Speci�cally, if a TCP
connection achieves throughput X under given net-
work conditions and measured over a given interval
length, then the proposed protocol should also have a
throughput of X over an interval of the same length
and under the same network conditions. Note that
the throughput X has to be measured over some
time interval, and based on the de�nition of \TCP-
Friendliness" proposed in [9], we assume that this in-
terval is signi�cantly larger than the round trip time.
The actual transmission rate, X, is determined by us-
ing a model-based characterization of TCP through-
put in terms of network conditions such as mean round
trip time and loss rate. We base our protocol on the
model proposed in [13]. In [23] the authors have pro-
posed a similar approach for multicast congestion con-
trol, using the formula proposed in [9]. Our protocol
di�ers form theirs in that we use a more accurate char-
acterization of TCP and unlike [23] we do not require
the use of data layering. Other TCP-friendly base-
line protocols that try to mimic the major features
of TCP congestion control algorithm without provid-
ing reliable delivery have been proposed [7, 17, 20, 24].
Some ongoing work, based partially on our ideas, with
a focus on formula-based multicast congestion control,
is also reported in [5, 6]. We discuss some of these pro-
tocols and their limitations in the next section.

We believe there are several advantages to taking
a formula-based approach towards developing a TCP-
friendly congestion control scheme. First, a formula
based approach is exible. By changing the formula,
one can easily adjust the performance of the proto-
col. This feature can later be exploited for making
the protocol sensitive to the timeliness requirement
of the media being transported. In addition, if TCP
and non-TCP ows are treated separately in the net-
work (perhaps using a scheme such as [2]), then the
formula-based approach can be modi�ed to allow non-
TCP ows to compete only against one another. Fi-
nally, in [23], it has been shown that such an approach
is more suitable for multicasting. Thus, a formula-

based approach based on an abstract TCP characteri-
zation can be viewed as a �rst step towards developing
a comprehensive solution to the problem of congestion
control for CM ows.

We evaluate the protocol under various tra�c con-
ditions, using simulations and implementation. The
simulations are used to study the behavior of the
protocol under controlled conditions. The implemen-
tation and experimentation involve over 300 exper-
iments over the Internet, using several machines in
the US and UK. Our experimental and simulation re-
sults show that the protocol is fair to TCP and to
other sessions running TFRCP, and that the formula-
based approach to achieving TCP-friendliness is in-
deed practical.

The rest of this paper is organized as follows. In
Section II, we present an overview of related work re-
ported in the literature, followed by a description of
our protocol and its advantages. In Section III, we
present simulation studies of our protocol. In Section
IV, we present results from a \real-world" implemen-
tation of the protocol. In Section V we discuss some of
our design choices. Section VI concludes the paper.

II. Rate Adjustment Protocols

Several TCP-friendly rate adjustment protocols
have recently been reported in the literature [7, 17,
20, 23, 24]. Of these, [23, 24] are speci�c to multicast
applications, while [7, 17, 20] are unicast oriented. We
now briey review each of these �ve schemes, describe
the new TFRCP protocol, and show how it overcomes
some of the limitations of earlier work.

A. Previous Work

In [7], authors describe a protocol that may be clas-
si�ed as a \TCP-Exact" approach. They propose a
protocol which manages its window size in exactly the
same way as TCP does, but instead of retransmitting
lost packets, it allows the user to send new data in
each packet. The principle concern with this protocol
is its inexibility. Since the protocol strictly adheres
to TCP window dynamics, it would be hard to modify
it to take into account timeliness requirements of CM
data delivery.

The TCP-friendly protocols reported in [17, 20, 23,
24] are based (either explicitly or implicitly) on the
TCP characterization �rst reported in [9] and later
formalized in [10, 12]. This characterization states
that in absence of timeouts, the steady state through-



put of a long-lived TCP connection is given by:

Throughput =
C

R � pp (1)

where C is a constant that is usually set to either
1:22 or 1:31, depending on whether or not receiver
uses delayed acknowledgments, R is the round trip
time experienced by the connection, and p is the ex-
pected number of window reduction events per packet
sent. Note that the throughput is measured in terms
of packets/unit time. Also note that p is not the
packet loss rate, but is the frequency of loss indica-
tions per packet sent [10]. The packet loss rate pro-
vides an upper bound on the value of p, and may be
used as an approximation. The key assumption be-
hind the characterization in (1) is that timeouts do
not occur at all. Consequently, it is reported in [10]
that (1) is not accurate for loss rates higher than 5%.
As the formula does not account for timeouts, it typi-
cally overestimates the throughput of a connection as
loss rate increases. Data presented in [10, 13] shows
that timeouts account for a large percentage of win-
dow reduction events in real TCP connections, and
that they a�ect performance signi�cantly.
In [23] the authors propose a multicast congestion

control scheme in which the data is transmitted in a
\layered" manner over di�erent multicast groups. The
more layers a receiver joins, the more data it receives.
In [23] the receivers compute round trip times and es-
timate the packet loss rate p, and use (1) to compute
the \TCP-friendly" rate at which they should receive
the data. Based on this estimate, and the knowledge
of the layering schemes, each receiver can dynamically
decide to join or leave certain multicast groups to ad-
just the rate at which it receives the data. In [24], the
authors propose a similar scheme in which the layers
have data rates that are �xed multiples of a base rate,
and a TCP-like e�ect (additive increase, multiplica-
tive decrease) is achieved by using strict time limits
on when a receiver might join or leave a group. The
analysis of the algorithm yields a throughput charac-
terization that is similar to (1). Apart from not being
TCP-friendly at loss rates above 5%, both schemes
rely on data layering, which is not easy to achieve for
all types of CM encodings. In addition, determining
round trip times in a multicast setting is a di�cult
task, as noted in [23].
In [20] the authors propose a scheme that is suitable

mainly for unicast applications, but may be modi�ed
for multicast applications. The scheme relies on reg-
ular RTP/RTCP reports [19] sent between the sender

and the receiver to estimate the loss rate and round
trip times. In addition, they propose modi�cations to
RTP that allow the protocol to estimate the bottle-
neck link bandwidth using the packet-pair technique
proposed in [1]. An additive increase/multiplicative
decrease scheme based on these three estimates (loss
rate, round trip delay, and bottleneck bandwidth) is
then used to control the sending rate. The scheme
has several tunable parameters whose values must
be set by the user. In addition, the scheme is not
\provably" TCP-friendly, although TCP-friendliness
is evidenced in the few simulations reported in the
paper. In [17] the authors propose an additive in-
crease/multiplicative decrease rate control protocol
that uses ACKs (in a manner similar to TCP) to es-
timate round trip times and detect lost packets. The
rate adjustment is done every round trip time. The
authors also propose to use the ratio of long-term and
short-term averages of round trip times to further �ne
tune the sending rate on a per-packet basis.

Although the protocols reported in [20] and [17] do
not explicitly use (1) to control their rates, the work
in [9, 10, 12] has shown that the relationship between
loss rate and the throughput of these protocols will be
similar to (1). As a result, these protocols will not be
\TCP-friendly" at loss rates higher than 5%. While
[20] ignores this problem, in [17] the authors mention
that their work is targeted towards a future scenario
in which SACK TCP [3] and RED [4] switches will be
widely deployed, reducing the probability of timeouts.
However, in the present Internet, TCP-Reno [21] is
the predominant protocol and very few RED switches
have been deployed.

In the next section we propose a new protocol that
achieves TCP friendliness in a more \real world" sce-
nario that includes competing TCP-Reno connections,
drop-tail switches and diverse background tra�c con-
ditions.

B. The TFRCP Protocol

The TFRCP protocol is a rate-adjustment conges-
tion control protocol that is based on the TCP char-
acterization proposed in [13]. Unlike [9, 10, 12], the
characterization in [13] takes into account the e�ects
of timeouts, a consideration that is particularly im-
portant when TCP-Reno (one of the most widely de-
ployed versions of TCP) is used with drop-tail routers,
which tend to produce correlated losses. If a TCP-
Reno connection encounters correlated losses, it tends
to experience a signi�cant number of timeouts [3]. In
[13] the authors quantify this phenomenon and its ef-



fects on throughput. The resulting analytic charac-
terization of TCP throughput can stated as follows:

Throughput � f(Wmax; R; p;B) (2)

where throughput is measured in packets per unit
time, Wmax is the receiver's declared window size, R
is the round trip time experienced by the connection,
p is the loss rate (or, more accurately, the frequency
of loss indications per packet sent) and B is the base
timeout value [21]. A complete statement of the for-
mula is presented in the Appendix.
There are two parts to the TFRCP protocol: a

sender-side protocol and a receiver-side protocol. The
sender-side protocol works in rounds of duration M
time units. We call M the recomputation interval. At
the beginning of each round, the sender computes a
TCP-friendly rate (we will shortly describe this com-
putation in detail), and sends packets at that rate.
Each packet carries a sequence number and a times-
tamp indicating the time the packet was sent. The re-
ceiver acknowledges each packet, by sending an ACK
that carries the sequence number and timestamp of
the packet it is acknowledging. Consider an ACK for
a packet whose sequence number is k. In addition to
the sequence number and the timestamp, the ACK
also carries a bit vector of 8 bits indicating whether
or not each of the previous 8 packets (k� 7 : : : k) was
received. The sender processes these ACKs to com-
pute sending rate for the next round. Note that each
packet is ACKd eight times, providing some protec-
tion against ACK losses.
Let us now consider the sending rate computation

in detail. Consider round i. Let ri be the sending rate
for this round, R be the the current round trip time
estimate, and B be the estimate of the base timeout
value. The number of packets to be sent in this round
is ni = ri �M . The ni packets are clocked out uni-
formly during the round1. As noted earlier, packets
carry a sequence number and a timestamp indicating
the time the packet was sent. The sender keeps a
log of all packets it has sent in this round. The log
contains two entries for each packet. The �rst entry
indicates whether the packet has been (i) received and
has been acknowledged by the receiver; (ii) presumed
lost; (iii) of unknown status (neither ACKd nor yet
presumed lost). We call this the \received status" of
the packet. The second entry consists of a value that

1In simulation studies, it is possible clock out packets evenly
over the entire duration of the round. This is not possible in
actual implementation, due to limited accuracy of timers. We
discuss this further in Section IV.

is equal to the time the packet was sent plus the cur-
rent base timeout value. We call this the \timeout
limit" for the packet.
As the sender sends packets, it also receives ACKs

from the receiver. Consider an ACK carrying se-
quence number k that is received by the sender at
time tk. Let the timestamp carried by the ACK be
sk. The sender updates the lost/received status of
packets (k � 7 : : : k) using the bit vector available in
the ACK. The sender also updates the round trip time
estimate (R) and base timeout (B) using the di�er-
ence tk � sk. This update is done exactly as in TCP;
see [22] for the details of the computation. At the end
of the ith round, the sender computes ri+1 as follows:
Let the current time be ti. Let j be the packet

with the smallest sequence number, whose received
status was \unknown" at the end of round i � 1, l
be the last packet sent and a be the highest sequence
number for which we have received an ACK. Then any
packet whose sequence number lies between j and l,
(both included) and whose timeout limit is less than
ti, is marked as lost. Also, any packet whose sequence
number lies between j and a (both included), and
whose received status is \unknown" is marked as lost.
Let xi be the number of packets marked as \received"
between j and a, and let yi be the number of packets
marked as \lost" between j and a. Then:
� If yi = 0, then no packets were lost and:

ri+1 = 2 � ri
Hence, when no packets are lost in a round, packets
are sent twice as fast in the next round. We will dis-
cuss this feature more in Section V.
� Otherwise, yi 6= 0. Let pi =

yi
xi+yi

. In this case, the
rate for round i+ 1 is

ri+1 = f(Wmax; R; pi; B)

where f is de�ned in (2). It is here that the analytic
characterization in [13] comes into play.
The starting value r0, can be set to any reasonable

value. We have found that for su�ciently long ows,
and for reasonable values ofM , the value of r0 has lit-
tle impact on the performance of the protocol. For all
simulations and experiments described in this paper,
we set this value to 40 packets/second. The initial
values of R and B are set in a manner similar to TCP
[22].
TFRCP has no built-in error recovery mechanisms.

When a comprehensive congestion control protocol,
based on TFRCP is developed, the applications will



be able to choose an error control strategy that is
appropriate for the given media type. An important
feature of any transmission control protocol is \self-
limitation" [17]. This means that if the protocol starts
experiencing 100% or near 100% losses, its sending
rate should be reduced to almost zero. TCP achieves
this via timeouts and eventual closedown of the con-
nection. The TFRCP protocol uses the model pro-
posed in [13], which takes into account the e�ect of
timeouts and automatically reduces the sending rate
to very small values at high loss rates.

The key question is how frequently the sender
should re-compute the rate, i.e., how to determine the
value of M . In the following section we use simula-
tions to explore various strategies for choosingM , and
their impact on the performance of the protocol.

III. Simulation Results

In this section we present simulation studies of the
TFRCP protocol. The simulations are used to study
the behavior of the protocol under controlled con-
ditions. In the following section we present addi-
tional studies carried out over the Internet. We have
used the ns simulator [11] for our simulations. There
are two main challenges for any simulation study of
this nature: �rst, how to select appropriate network
topologies and how to e�ectively model the back-
ground tra�c and second, how to de�ne and measure
appropriate performance metrics. Several di�culties
in this regard are pointed out in [16]. Thus, before we
present any simulation results, we discuss our simula-
tion topology and our performance metrics.

A. Simulation Topology

In our simulations, we use a simple topology to un-
cover and illuminate the important issues; our exper-
iments with TFRCP over the Internet test its use in
\real-world" scenarios. The simulated network topol-
ogy assumes a single shared bottleneck link, as shown
in Figure 1. The sources are arranged on one end of
the link and the receivers on the other side. All links
except the bottleneck link are su�ciently provisioned
to ensure that any drops/delays that occur are only
due to congestion at the bottleneck link. All links
are drop-tail links. Many previous studies [3, 4, 17,
20] have used similar topologies.

The problem of accurately modeling background
tra�c is more di�cult. We consider three types of
background tra�c: in�nite-duration FTP-like connec-
tions, medium-duration FTP -like connections and
self-similar UDP tra�c. The in�nite-duration FTP

Bottleneck Link

Senders Receivers

Fig. 1. Simulation Topology

connections allow us to study the steady-state be-
havior of our protocol. Medium-duration FTP con-
nections introduce moderate uctuations in the back-
ground tra�c. Finally, self-similar UDP tra�c is be-
lieved to be a good model for short TCP connections
such as those resulting from web tra�c [15, 25].
When multiple TCP connections are simulated over

a single bottleneck link, the connections can become
synchronized. We take two measures to prevent such
synchronization. First, we start the connections at
slightly di�erent times. Second, before each packet is
sent out, a small random delay is added to simulate
processing overhead. These measures are applied to
both TCP and TFRCP connections.

B. Performance Metrics

Recall that we view TFRCP protocol as only a �rst
step towards developing a comprehensive congestion
control protocol for CM data ows. Thus, we are
only interested in measuring the \TCP-friendliness"
of the TFRCP protocol. We de�ne the \friendliness"
metric as follows. Let kc denote the total number
of monitored TFRCP connections and kt denote the
total number of monitored TCP connections. We de-
note the throughput of the kc TFRCP connections
by T c

1 ; T
c
2 ; : : : T

c
kc

and that of the TCP connections by
T t
1; T

t
2 ; : : : T

t
kt
respectively. De�ne:

TC =

Pkc
i=1 T

c
i

kc
and TT =

Pkt
i=1 T

t
i

kt

The performance metric of interest is the \friendliness
ratio", F :

F = TC=TT

Another metric for measuring performance is the
\equivalence ratio", E:

E = max(TT =TC ; TC=TT )



Note that the value of E is always � 1. E gives a
better visual representation of the closeness of the
throughputs achieved by the two protocols. How-
ever, this metric will distort any trend that might be
present in the ratio of the two throughputs as we vary
various parameters. For example, a decreasing value
of F as a function of some system parameter will not
always result in a decreasing value of E: Thus, we use
F as the fairness metric whenever we are interested
in trends, and use E otherwise. It is also important
that the TFRCP connections achieve fairness amongst
themselves. We de�ne the ratio:

FC =
max1�i�kc T

c
i

min1�i�kc T
c
i

to characterize the fairness achieved among the
TFRCP connections.

C. Simulation Scenarios

We now present results of performance evaluation
of TFRCP protocol in various simulation scenarios.

C.1 Long duration ows with constant bottleneck
bandwidth

In this scenario we consider tra�c made up entirely
of equal numbers of in�nite-duration TCP connec-
tions and in�nite-duration TFRCP connections. All
connections always have data to send. All connec-
tions start at the beginning of simulation and last
until the simulation ends. The aim here is to study
steady state behavior of TFRCP protocol. If TFRCP
performs well (i.e., in a TCP-friendly manner), the
TCP and TFRCP connections should see approxi-
mately the same throughput.

We vary the total number of ows in the net-
work between 10 and 50. Half of these connec-
tions are TCP connections and the rest are TFRCP
connections. The initial sending rate, r0, for all
TFRCP connections was set to approximately 40
packets/second. The bottleneck bandwidth is held
constant at 1.5Mbps, and the bottleneck delay is set
to 50ms. This roughly simulates a situation in which
a number of connections share a T1 link. As the num-
ber of ows grows, the window sizes of individual TCP
connections shrink, increasing the probability of time-
outs. In such circumstances, the congestion control
protocols proposed in [17, 20] are not be able to guar-
antee fairness.

We consider three di�erent ways to determine how
frequently TFRCP should recompute its rate:

� Fixed recomputation interval, i.e. we use a �xed
value for M . We call this strategy S1.
� The recomputation interval is a �xed multiple of
round trip time. If at the beginning of round i the
round trip time is rtti, then the next recomputation
is performed after K � rtti time units, where K is
constant. We call this strategy S2.
� The recomputation interval is calculated at the be-
ginning of each round, and is set to sum of two num-
bers, one of which is a constant while the other is cho-
sen from a uniform random distribution. This strat-
egy will further prevent TFRCP connections from
synchronizing with each other. We call this strategy
S3.

In Figure 2(a) we present simulation results for the
case in which the TFRCP protocol uses strategy S1,
with �ve values of M between 2 and 5 seconds. The
length of each simulation was 1000 seconds, and the
throughput of all connections was measured at the
end of the simulation. Each data point is an aver-
age of three experiments. It can be seen that with
steady state background tra�c, the protocol is able
to maintain a friendliness ratio close to 1.

In Figure 2(b) we present simulation results when
TFRCP protocol uses strategy S2, with four values
of K between 10 and 60. We notice that as the load
on the network increases, the resulting TFRCP be-
havior is more aggressive than TCP. As the load on
the network increases, the round trip time experienced
by each ow also increases. As a result, each TFRCP
ow re-computes its rate less frequently. TCP reduces
its transmission rate multiplicatively every time it en-
counters a loss, and increases it only additively in case
of no loss, thus the slowness of response of TFRCP
ows to react to losses hurts the throughput of TCP
connections. Thus TFRCP is more aggressive, and
clearly S2 is not an appropriate strategy for deciding
recomputation intervals.

In Figure 2(c) we present simulation results where
TFRCP protocol uses strategy S3. For each line we
use a di�erent constant and a di�erent uniform ran-
dom distribution: 0:3 + [0; 5:4]; 1:5 + [0; 3] and 2:7 +
[0; 0:6]. For this simulation study, all TFRCP connec-
tions were started simultaneously. It can be seen that
in this third case the protocol is able to maintain a
friendliness ratio close to 1.

We have performed simulations with other bottle-
neck delays and observed similar results. In the rest
of this section we only present results using strategy
S1. We do this for two reasons. First, strategy S1
is the simplest strategy. The goal of this paper is to
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Fig. 2. Constant Bottleneck bandwidth, Bottleneck Delay 50ms

present TFRCP protocol as a baseline policy; use of
a simple policy to decide the recomputation interval
is consistent with that goal. Second, the question of
selecting the appropriate recomputation interval re-
quires more complex answers than the three simple
strategies described here. The recomputation interval
must be short enough to allow TFRCP to be respon-
sive, while at the same time it must be large enough
to allow the loss rate measurements to be meaningful.
This question is currently under research [5, 6]. Thus,
it is appropriate to restrict the baseline protocol de-
scribed here to the simplest strategy.

Recall that the TFRCP connections should be fair
to each other as well. In Figure 3 we plot the value
of FC when the TFRCP protocol uses strategy S1.
It can be seen that the TFRCP protocol achieves ac-
ceptable fairness among TFRCP connections in most

cases.

C.2 Long duration ows with constant bottleneck
bandwidth share

In this scenario, the tra�c is made up of in�nite-
duration TCP connections and in�nite-duration
TFRCP connections. All connections start at the be-
ginning of the simulation and last until the end. We
vary the total number of ows in the network between
10 and 50. The bottleneck bandwidth is computed by
multiplying the total number of ows by 4Kbps. The
bu�er size at the bottleneck link was set in each case
to four times the bandwidth-delay product. These set-
tings of packet and bu�er sizes allow the TCP connec-
tions to have \reasonable" window sizes [17] and ex-
hibit the full range of behavior such as slow start and
congestion avoidance. Each experiment is repeated
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for various values of the recomputation interval, M .
The initial sending rate, r0, for all TFRCP connec-
tions was set to approximately 40 packets/second.
In Figures 4(a) and 4(b) we plot F and FC (TCP-
friendliness and Fairness among TFRCP connections)
for this scenario when the bottleneck delay was 50ms
and the TFRCP connections used strategy S1. It
can be seen that with steady state background traf-
�c, the protocol is able to maintain a friendliness ra-
tio close to 1, and the TFRCP connections are fair
among themselves as well. We performed simula-
tions with bottleneck delay of 20ms and 100ms as well
(not shown here), and found that for small bottle-
neck delays, TFRCP behaves more aggressively than
TCP. We conjecture that this is due to the fact that
with lower round trip times, TCP reacts to losses and
small changes in tra�c uctuations more quickly. At
higher round trip delays (100ms) the performance of
the TFRCP protocol for small values of M (< 3 sec-
onds) shows high variance, as the protocol is unable
to gather su�cient samples to estimate loss rates ac-
curately.

C.3 Dynamically Arriving Medium-duration FTP
Connections

In this simulation scenario, we study the e�ect of
\slow" changes in the background tra�c. Recall that
in the simulations described so far, tra�c consisted
of in�nite TCP and TFRCP connections. We now
consider the case that there is one in�nite-duration
TCP connection, one in�nite-duration TFRCP con-
nection, and additional tra�c consisting of dynami-
cally arriving TCP connections, each of which trans-
fers a �xed amount of data. In computing F; we con-
sider only the two in�nite-duration connections. The

bottleneck link bandwidth is set to 1.5Mbps and the
bottleneck delay is set to 50ms. The duration of sim-
ulation is 1000 seconds. The amount of data trans-
ferred by each background connection is chosen from
a uniform distribution. The interarrival times for the
medium-duration FTP connections are chosen such
that on average a constant number of background con-
nections will be active. A higher average number of
background connections leads to more uctuations in
the background tra�c, and in addition, the window
size of each TCP connection tends to be smaller (due
to a smaller bandwidth share), increasing the possi-
bility of timeouts. We are interested in the perfor-
mance of TFRCP protocol as the average number of
background connections change. For graphs in Fig-
ures 5(a) and 5(b) the data transferred by each con-
nection is chosen from [0; 80KB] (average 40KB) and
[0; 160KB] (average 80KB), respectively.

The results in Figure 5 show that TFRCP main-
tains a friendliness ratio of approximately one with
a recomputation interval M = 2 seconds. The ra-
tio decreases as the recomputation interval becomes
larger. We conjecture that this behavior is due to the
nature of the background tra�c. As old connections
terminate and new ones start, there are small periods
of time during which the background tra�c decreases
slightly as the new connections go through their slow
start phase. TCP is better able to take advantage of
these small drops in the background tra�c, due to its
faster feedback mechanism. The TFRCP connection
changes its sending rate only every M seconds, and
hence is unable to take advantage of short-term drops
in the background tra�c.

C.4 ON/OFF UDP tra�c

In this simulation scenario, we model the e�ects
of competing web-like tra�c (very small TCP con-
nections, some UDP ows). It has been reported in
[15] that WWW-related tra�c tends to be self-similar
in nature. In [25], it is shown that self-similar traf-
�c may be created by using several ON/OFF UDP
sources whose ON/OFF times are drawn from heavy-
tailed distributions such as the Pareto distribution.
Figure 6 presents results from simulations in which
the \shape" parameter of the Pareto distribution is
set to 1.2. The mean ON time is 1 second and the
mean OFF time is 2 seconds. During ON times the
sources transmit with a rate of 12Kbps. The number
of simultaneous connections is varied between 20 and
80. The simulation was run for 25000 seconds. As in
the previous subsection, there are two monitored con-
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nections, an in�nite TCP connection and an in�nite
TFRCP connection (i.e. k = 2). The bottleneck link
bandwidth is set to 1.5Mbps and the bottleneck delay
is set to 50ms. From the results in Figure 6, we can see
that the TFRCP protocol is still relatively fair. The
fairness index again decreases as the recomputation
interval, M , increases. We believe that this is due to
the fact that the TFRCP connection recomputes its
rate only after every M time units. Hence, it can not
increase its sending rate during the small periods of
time in which the background tra�c drops in inten-
sity. Results for other values of the shape parameter
are similar.

D. Summary of simulation results

The simulations results presented in this section
show that the TFRCP protocol is `TCP-friendly" un-
der a wide variety of tra�c conditions. We found that
the strategy to use a �xed value for recomputation in-
terval (M), works well for a wide variety of tra�c
conditions. While the simulation study is based on
several di�erent tra�c scenarios, it is important to
observe the performance of the protocol in real world.
In the next section we discuss the implementation and
present results based on experiments carried out over
the Internet.

IV. Implementation and Experimental

Results

As noted in [16], simulating an Internet-like envi-
ronment is very di�cult. It is thus essential to test
protocols like TFRCP via implementation and exper-

imentation in a real-world setting. Our goal here is
thus to show that the approach is practical, and that
performance of the protocol under real-world condi-
tions is comparable to that observed in the simula-
tions. We have implemented a prototype version of
our protocol and tested it on several Unix systems.
In this section, we �rst describe the implementation,
and discuss some of the di�culties encountered. We
then present the results from over 300 experiments
performed using this implementation.

A. Implementation

Our implementation of TFRCP is done in user
space, on top of UDP. The sender side of TFRCP
runs as two processes, one sending the data and the
other receiving ACKs. The two processes communi-
cate via shared memory. An earlier attempt to imple-
ment the protocol using multiple threads failed, as the
p-threads package could not provide su�ciently accu-
rate scheduling control to avoid starving either the
sender or the receiver thread. We were able to reuse
much of the ns simulation code for the actual imple-
mentation. However, we encountered three important
problems during the implementation:

� A signi�cant problem in any actual implementation
is the the accuracy of the various timers involved. For
simulation purposes, we could time out packets with
arbitrary precision. This is not possible in an actual
implementation, as the timers are neither arbitrar-
ily accurate nor are they free of overheads. In some
of our early experiments we found that when using
the gettimeofday and select system calls, we could
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not control inter-packet interval more accurately than
within several milliseconds. While we could achieve
better accuracy using busy waiting in the process that
sent the packets out, this can possibly starve the pro-
cess that receives ACKs. On a FreeBSD machine
used in this study, busy waiting caused other prob-
lems that forced us to use gettimeofday and select

system call in our FreeBSD implementation. Due to
these di�culties, it is not possible to clock packets out
smoothly over the duration of each round, as men-
tioned in Section II-B. Instead, we send packets out
in small bursts. Consider round i. Let R be the round
trip time estimate at the beginning of this round, and
ri be the sending rate. The duration of the round is
M time units. Then, the round is divided into bursts
of duration R each. The number of bursts is thus,
bi = M=R. In each burst, ni=bi (rounded to nearest

integer) packets are sent back-to-back, followed by a
silence period of R time units.
� Another important problem was the accuracy of the
round trip times. The TFRCP protocol begins mea-
suring the round trip time for each packet as soon
as it is handed to the kernel socket using sendto.
Thus, our round trip times include the time each
packet spent waiting in the kernel bu�ers (similarly
for ACKs). Thus, our estimate of round trip times is
higher than that of the in-kernel TCP's. In addition,
due to additional di�culties with timers, we had to
restrict the protocol to transmit at least one packet
per round trip time.
� In our simulation studies, it was easy to ensure that
the packet sizes for TCP and TFRCP connections
were the same. It is more complicated to ensure this
in practice. Our implementation currently does not



Hostname Domain Operating System

alps cc.gatech.edu SunOS 4.1.3

bmt cs.columbia.edu FreeBSD 2.2.7

edgar cs.washinton.edu OSF1 3.2

manic cs.umass.edu IRIX 6.2

maria wustl.edu SunOS 4.1.3

newton nokia-boston.com SunOS 5.5.1

sonic cs.ucl.ac.uk SunOS 5.5.1

void cs.umass.edu Linux 2.0.30

TABLE I

Hosts used for empirical studies

employ any path MTU discovery algorithm, nor does
it change the size of outgoing packets. For each exper-
iment described in the next section, the packet size is
held constant, determined by the MTU discovered by
TCP in previous experiments between the same two
hosts. While we have found that we seldom had prob-
lems with the MTU value, it is hard to quantify the
e�ects of constant packet size on throughput.

As a result of the implementation considerations
noted above, we expect the results from implementa-
tion experiments to di�er somewhat from the simula-
tion experiments. However, we can still use the imple-
mentation to corroborate the intuition gained through
our simulations, to examine TFRCP performance in
real-world setting, and to provide a starting point for
a more re�ned implementation.

B. Experimental Results

The hostnames, domains and operating systems of
the machines used for the implementation study are
listed in Table I. To measure the fairness of TFRCP
compared to TCP, we performed the following experi-
ment. We established two connections between a pair
of hosts. One of these connections was controlled by
the TFRCP protocol, while the other was controlled
by the TCP protocol. Both connections ran simulta-
neously, and transferred data for 1000 seconds, as fast
as possible. The length of the recomputation interval,
M , for the TFRCP connection was set to 3 seconds;
the receiver's declared window size, Wmax, was set to
100 packets; and the initial sending rate, r0, was set
to approximately 40 packets/second. The throughput
of the two connections was measured in terms of num-
ber of packets transferred in these 1000 seconds. Let
us denote these throughputs TC and TT respectively.

Figures 7(a)-7(c) show the results when the senders

were void, manic and bmt respectively. Since we are
not interested in trends along the x-axis, we use E
as our performance metric. For each of the �rst �ve
bars, the x-axis shows the receiver. To plot this graph,
at least 15 experiments were performed between the
sender and the receiver at random times during the
day and night2, and for each experiment the value
of E was computed. It is suggested in [8] that data
from such experiments should be represented by its
median, and that the variation be represented by the
semi-inter quartile range (SIQR), de�ned as half of the
di�erence between the 25th and the 75th percentiles of
the data set. Thus, the height of each bar is the me-
dian of that data set, while the the bar represents the
SIQR, centered about the median. The last bar rep-
resents the median and the SIQR of all experiments.
It can be seen that in most cases, the TFRCP pro-

tocol achieves a throughput that is within 35-50% of
the TCP throughput and that the di�erence seldom
exceeds 75%. The median of all three data sets taken
together is 1.448 and the SIQR is 0.275. There are
many possible reasons for the observed di�erence be-
tween the TCP and TFRCP throughputs. Some vari-
ation is unavoidable { we have found that the through-
put of two simultaneous TCP connections between the
same hosts can di�er by as much as 10%. Additional
variation results from the various implementation dif-
�culties described earlier. And �nally, one must re-
member that the formula described in [13] is only an
approximation.
Figures 7(a)-7(c) are based on throughputs that

have been computed over the entire duration of the
experiment (i.e., 1000 seconds). It is also interesting
to compare the di�erence in TCP and TFRCP as a
function of time, and over shorter intervals of time.
Such a comparison illustrates how well the TFRCP
protocol performs at various time scales. In Figure 8,
we plot the throughput of the TFRCP and the TCP
connections between manic and edgar, measured ev-
ery 6, 12, 24 and 48 seconds respectively. It can be
seen that TFRCP tracks variations in throughput of
the TCP connection quite well, at various time scales.
To measure the sensitivity of the protocol to the

interval over which we measure the loss rate and
update the sending rate (i.e. the value of M), we
performed several data transfers between the same
sender-receiver pair, using di�erent measurement in-
tervals. We now use F as our fairness metric, as we
are interested in the trend in the performance metric

2Experiments with bmt as a sender were performed only dur-
ing the day.
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Fig. 7. Experimental Results

as we vary M . In Figure 9 we show the results of one
such study, performed between void and alps. The
measurement interval was varied between between 2
and 10 seconds. For each value of measurement in-
terval, at least 20 experiment were conducted at ran-
dom times. The data points are the medians of the
throughput ratios, and the error bars represent the
SIQR. One can see that as the measurement interval
grows larger, the TFRCP protocol becomes less ag-
gressive. This result is consistent with the simulation
results presented in the previous section. From the
results presented in this section, we can conclude that
the protocol indeed performs well in a real world set-
ting, despite the limitations and di�culties imposed
by various implementation issues.

V. Discussion of Protocol Features

In this section we discuss the impact of some of the
design choices made while simulating and implement-
ing TFRCP.

Recall that TFRCP doubles its sending rate when
no packets are lost in an entire recomputation period,
since the formula in (2) is not valid for zero loss rate.
During periods of no loss, the TCP window grows lin-
early (ignoring the initial slow start period), by one
every RTT. Since the sending rate is proportional to
the window size, one can say that the sending rate
of TCP grows linearly during periods of no loss. We
found that when we try to mimic this linear increase
behavior in TFRCP, the protocol performed poorly
(i.e., the friendliness ratio was higher). This is due to
the fact that in most of our simulations and Internet
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Fig. 8. Throughput at various timescales
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experiments, the fair share of the TFRCP connection
tended to be relatively small. If, after a recomputa-

tion interval of no loss, we increased the rate in a linear
fashion, the relative change in the rate was very high



(e.g., if no loss occurred during a three-second period,
and if RTT was 100ms, the rate would increase by
3=0:1 = 30). This led to very high losses in the next
round, which in turn dropped the sending rate to a
very low value, leading again to a no-loss, or low-loss,
period. This oscillatory behavior was detrimental to
the performance of the protocol. Doubling the send-
ing rate seems to o�er a good compromise between
responsiveness (ramping up the sending rate quickly)
and avoiding oscillatory behavior.

The value of Wmax can signi�cantly a�ect the
throughput computed using the formula in (2) at low
loss rates. While in the simulations studies it is easy
to ensure that competing TCP and TFRCP ows had
the same value for Wmax, this is hard to ensure in
practice. We note that this problem is inevitable
whenever ow control is employed: two TCP con-
nections experiencing same network conditions, but
having di�erent values for Wmax, will have di�erent
throughputs.

Another design issue is how to set the initial value
for r0. For the simulation and implementation results
reported in this paper, we set this value to approxi-
mately 40 packets/second. As long as the recompu-
tation interval M was small compared to the time
over which the friendliness or equivalence was being
measured, the value for r0 had little impact on the
performance of TFRCP.

As mentioned in Section IV, timer inaccuracies and
overheads force us to send packets out in small bursts,
instead of clocking them out evenly over the duration
of each round. The impact of this burstiness on per-
formance of TFRCP protocol is hard to quantify. On
one hand, one may imagine that burstiness would lead
to slightly higher loss rates for TFRCP connection,
forcing the throughput down. On the other hand,
tra�c from a TCP ow is somewhat bursty as well
[3]. Thus the impact of bursty nature of TFRCP ow
on friendliness ratio is hard to judge.

It should be noted that the formula in (2) is not
valid for certain network scenarios, such as TCP con-
nections running over modem lines with large dedi-
cated bu�ers [13]. This implies that the TFRCP pro-
tocol would not work well in these situations either.
We are currently working on solutions to this prob-
lem. We also note that TFRCP reacts to changes in
network conditions only every M time units (i.e. the
duration of recomputation interval). If the network
tra�c conditions change on a faster time scale, the
di�erence between the throughput of a TCP connec-
tion and a TFRCP connection experiencing similar

network conditions may be signi�cant. Under such
dynamic conditions, obtaining accurate loss estimates
and round trip times can be problematic. We note
that in real-world testing, Figures 7(a)- 7(c), we have
found that the protocol works well with a recompu-
tation interval of three seconds. One may question if
achieving TCP-Friendliness at large time granularities
is useful at all. We would like to point out that mul-
tiple TCP connections going over the same network
path need not achieve same throughput on a time
scale comparable to the round trip time. Thus, fair-
ness needs to be measured over time intervals longer
than a few round trip times. One must also note that
very short TCP connections such as HTTP transfers,
do not achieve friendliness even among themselves.
Hence, we have restricted ourselves to achieving fair-
ness between long term TCP and TFRCP connec-
tions. We believe that as long as the duration of a
ow is signi�cantly larger than M , the TFRCP pro-
tocol achieves this goal.

VI. Conclusions and Future Work

In this paper we have presented a TCP-friendly rate
adjustment protocol. The protocol achieves TCP-
friendliness by changing its sending rate, based on
TCP characterization developed in [13]. using the
measured loss rate and round trip times In addition to
studying the protocol through simulations, we imple-
mented a prototype version of the protocol and tested
it with experiments over the Internet. The results
of both simulation and implementation experiments
show that the protocol is able to achieve throughputs
that are close to the the throughput of a TCP connec-
tion traveling over the same network path. Thus, we
conclude that formula-based feedback-loop approach
to congestion control and achieving TCP-friendliness
is indeed practical.

We have identi�ed several avenues for future work.
We are currently working on developing better tech-
niques for loss rate estimation. We plan to re�ne the
implementation of the protocol, especially the imple-
mentation of various timers. We also plan to investi-
gate if any other throughput formulas can be used in
the feedback loop, and their impact on performance
of the protocol. Above all, we are working towards
developing a comprehensive protocol for congestion
control of continuous media ows. The protocol will
take into account the e�ects of limited bu�er space
available at the sender and the receiver, along with
the timeliness requirements and loss tolerance of the
speci�c media being sent.
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