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Abstract— Multimedia streaming applications consume a significant
amount of server and network resources due to the high bandwidth and
long duration of audio and video clips. Making streaming services eco-
nomically viable requires techniques for minimizing the incremental cost
of serving a new client, particularly for popular content. Patching [1] re-
duces server and network overhead by allowing a client to receive (part of)
a multimedia stream by listening to an ongoing transmission of the same
clip, without increasing client playback delay. However, existing patch-
ing schemes [1–3] do not fully exploit the client buffer space or the abil-
ity to listen to more than one ongoing transmission, for reducing band-
width overheads. In this paper, we first introduce Periodic Buffer Reuse
(PBR) patching that maximizes the amount of data that a client can re-
trieve from the ongoing transmission. Similar to the existing schemes,
PBR can employ a threshold to determine when to start a new complete
transmission of the stream. We derive a closed-form expression for the
transmission bandwidth requirements for PBR patching, and show how
to determine the optimal threshold value. Our performance compari-
son demonstrates that PBR can significantly outperform existing patch-
ing schemes. We then presentGreedy Buffer Reuse(GBR), an algorithm
that allows clients to patch to multiple ongoing transmissions. We show
that this algorithm provably minimizes the server and network transmis-
sion bandwidth requirements. Simulation experiments demonstrate that
GBR patching offers a sizeable reduction in transmission overhead over
any of the threshold-based schemes, and rarely requires the client to lis-
ten to more than three simultaneous transmissions, for the scenarios we
examine.

I. I NTRODUCTION

A pervasive high-speed networking infrastructure and a ma-

ture digital video technology has led to the emergence of sev-

eral networked multimedia applications which include stream-

ing video as an integral component. Examples of such appli-

cations include live video broadcasts, distance learning, cor-

porate telecasts, narrowcasts, and streaming of Web video

clips. Video streams typically have high bandwidth require-

ments even when compressed (e.g.,4� 6 Mbps for MPEG-2),

and such flows can be relatively long lived, making it expensive

to deliver multimedia content. In addition, many applications

have asynchronous clients that may request a video stream at

different times. Still, particularly for popular clips, the client

requests may arrive close together in time relative to the du-
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ration of the stream. Making high-volume video services eco-

nomically viable requires effective techniques that minimize

the incremental cost of serving a new client, while also lim-

iting the client start-up latency and the likelihood of rejecting

requests due to resource constraints.

For popular video streams, the server and network resources

can be significantly reduced by allowing multiple clients to re-

ceive all, or part of, a single transmission [4–9]. For exam-

ple, the server couldbatchrequests that arrive close together

in time [4], and multicast the stream to the set of clients. In

addition to reducing server load, batching also lowers network

overheads, particularly when clients share one or more links in

common. However, batching must trade off the client playback

latency against the ability to aggregate successive requests.

Other approaches exploit the client’s buffer space and the abil-

ity to listen to multiple simultaneous transmissions, either by

passively listening on a shared medium or by joining/leaving

multiple multicast groups. Inperiodic broadcastschemes, the

server continuously broadcasts segments of the video on a col-

lection of transmission channels [6–9]. Clients can listen to

multiple channels at the same time and store segments for later

playback. To limit start-up latency, the short initial segments

are repeatedly more frequently than later, longer ones. Hence,

achieving a low start-up latency requires a larger number of

channels, which increases the load on the server and the net-

work.

This paper explores a technique for reducing server and net-

work transmission bandwidth usage for disseminating a video

stream to multiple asynchronous clients, without introducing

any client startup delay. Known aspatching[1], this involves

using client-sideworkahead bufferingto allow a new client

to receive (part of) its future playback data requirement by

listening in to anexistingongoing transmission of the same

video, with the server transmitting afresh only the remaining

required frames. For example, suppose a multimedia server

begins streaming a two-hour video clip to a requesting client,

and a second client requests the same video ten minutes later.



Rather than transmitting the entire video a second time, the

server could stream just the first ten minutes of the clip to

the second client, while at the same time have this client re-

trieve and store (for a short period of time) the remaining video

frames from the ongoing transmission of thecompletevideo to

the first client. This capitalizes on buffer space at the client site

to store a ten-minute sliding window of frames from the ongo-

ing transmission, and sufficient client I/O bandwidth for listen-

ing to two simultaneous transmissions for the first ten minutes.

As a result, fewer server and network resources are required

to satisfy the clients. Unlike batching, patching allows a client

to begin playback immediately by receiving the initial video

frames directly from the server. Similar to periodic broadcast

schemes, patching exploits the client buffer space to store fu-

ture frames from other video transmissions. Unlike periodic

broadcasting, the server transmits video data only on-demand,

when new clients arrive.

Existing patching schemes [1–3] do not fully exploit the

client buffer space or the ability of the client to listen to more

than one ongoing transmission, for reducing the transmission

bandwidth requirements. We refer to these earlier algorithms

as Restricted Buffer Reuse (RBR) schemes. In Section II, we

discuss these algorithms in more detail, and introduce a gen-

eral model for designing patching services. Then, we propose

and analyze two new patching algorithms that capitalize on the

client buffer space to maximize the portion of the video that

can be received from ongoing transmissions of the same video.

First, in Section III, we present the Periodic Buffer Reuse

(PBR) algorithm that maximizes the amount of data that a sub-

sequent client can receive from the existingcompletetrans-

mission, even if the client buffer is not large enough to store

the entire sliding window of frames. As with earlier patching

schemes, PBR can be used in conjunction with a thresholding

policy that determines when a client request should trigger a

new complete transmission of the video stream. We derive a

closed-form expression for the transmission overheads under

our proposed patching scheme, and show how to compute the

threshold value that minimizes the expected aggregate trans-

mission bandwidth required to satisfy each client. Based on

this analysis, we compare our approach to an RBR patching

policy that uses an optimal threshold [2].

Although PBR maximizes the amount of data that a client

can receive from an existingcompletetransmission, it does

not exploit the potential of receiving data from more than one

ongoing transmission. In Section IV, we present anoptimal

patching algorithm,Greedy Buffer Reuse(GBR) that allows the

client to receive frames from multiple ongoing transmissions.

The algorithm is optimal in that no other patching scheme can

satisfy any given sequence of client requests with a lower trans-

mission bandwidth usage. We present a proof of optimality,

and compare the performance of the optimal algorithm to PBR.

The simulation experiments show that GBR patching offers a

sizeable reduction in server and network overhead, and rarely

requires the client to listen to more than three ongoing trans-

missions, for the configurations we examine. This optimal al-

gorithm provides a lower bound on the achievable transmission

overhead, and can thus serve as the basis of new patching algo-

rithms with lower computational complexity, and simpler im-

plementation. In Section V, we describe our ongoing research

on extending and evaluating both PBR and GBR patching. Sec-

tion VI concludes the paper with a brief summary of the con-

tributions of the work.

II. PATCHING MODEL

In this section, we first present related work on patching al-

gorithms. We then describe a practical setting for video patch-

ing services, based on the capabilities of today’s personal com-

puters and network support for multicast. Finally, we provide

a brief summary of our patching model, which serves as the

basis of the new patching algorithms presented in Sections III

and IV. The new schemes can fully capitalize on the avail-

able client buffer space, as well as the ability of the client to

switch between different multicast groups, to reduce the aggre-

gate transmission bandwidth required to serve a new client.

A. Related Work

A patching scheme dictates which video frames can be re-

trieved from an ongoing transmission, and when the patching

server should initiate a new complete transmission of the en-

tire video. Existing patching schemes [1–3] limit the client

to listen to a contiguous set of frames from asingleongoing

transmission; the remainder of the frames must be retrieved

from the content server. For example, assume a discrete-time

model at the granularity of one frame time (e.g.,33 msec for a

30-frame/second video), where the client has aB-frame buffer.

Suppose that a client arrivest frame times after the beginning

of the most recently started complete transmission of anN -

frame video, initiated at the request of another client. Under

existing patching policies, ift � B, the initial t frames are

sent directly by the server, and the remainder of the frames are

retrieved from this ongoing complete transmission. Ift > B,

then the client receives only the lastB consecutive frames of

the video from the existing transmission, and the server must

supply the rest of the frames to the new client. Thus, in this

latter case, only the finalB frames of the video are shared by

the two clients.

Existing patching schemes include a second critical compo-



nent – a threshold valueT 2 f0; 1; : : : ; N�1g is used to deter-

mine when to initiate a new complete transmission of the entire

video to satisfy a client request. The server does not start a new

complete transmission unless the client request arrives more

thanT frame times after the beginning of the most recently

initiated complete transmission. All other clients witht � T

patch onto the earlier complete transmission. Existing patch-

ing schemes differ in the particular threshold chosen. Under

Greedypatching [1, 3] a client patches to an ongoing transmis-

sion whenever possible (i.e.,T = N � 1); hence, at any time,

there is at most one ongoing complete transmission of the video

from the server. In contrast,Gracepatching [1, 3] starts a new

complete transmission whenever a client arrives more thanB

time units after the start of the last complete transmission (i.e.,

T = B), rather than having the client patch only to the lastB

frames of the earlier ongoing complete transmission. There-

fore, there may be multiple ongoing complete transmissions

at any time forGrace. Grace patching typically outperforms

greedy patching, by allowing future client requests to benefit

from the start of a new transmission. Generalizing the idea of

threshold-based patching, it is possible to determine the value

of T that minimizes the average transmission required to serve

a client, as a function of the request arrival rate�, the client

buffer sizeB, and the length of the videoN . For a Poisson ar-

rival process, it is possible to derive a closed-form expression

for the optimal value ofT [2].

B. Practical Setting

Central to any effective patching scheme is the ability of

the client to listen to multiple transmission channels simulta-

neously, and to store frames ahead of their playout time. Patch-

ing operates well within the buffer space and I/O bandwidth of

today’s end systems. Both per-byte storage cost and access la-

tencies for main memory and disk are decreasing dramatically.

In addition, system bus speeds are also increasing. Commodity

PCs already offer100 MHz system bus and64–128 megabytes

of main memory, as well as several gigabytes of disk storage.

These trends suggest that a significant segment of client sta-

tions have enough high-bandwidth storage space to accommo-

date several minutes worth of high-quality streaming video.

These clients also have sufficient I/O and disk bandwidth to

listen to multiple transmission channels simultaneously. For

example, the ubiquitous Ultra ATA IDE disk interfaces offer

about33 Mbps. Newer PCs can support transfer rates of40–

100 Mbps with Ultra SCSI or Fiber Channel I/O interfaces.

Transmission of a video to a set of clients is coordinated

by a patching server, located at the multimedia source or at a

proxy inside the network. Employing patching functionality at

a proxy is useful in various situations, e.g., to achieve patching

gains while streaming video from a conventional content server

which does not employ patching itself. Proxy-based patching

is also useful if multicasting capability is not available on an

end-end basis from the content server to clients. For exam-

ple, in a heterogeneous internetworking environment, a proxy

server in a domain close to the clients may receive the video

on a unicast connection from the content server, and multi-

cast the stream to downstream clients. Performing patching

at the proxy reduces the bandwidth consumed on the path from

the multimedia source to the proxy and from the proxy to the

clients. In some cases, the proxy can provide a patching ser-

vice without requiring the cooperation of the server (and hence

any modifications to existing server sites) by issuing requests

for the appropriate frames of the video (e.g., using a proto-

col such as RTSP [10]). This is advantageous and suggests

that proxy patching services can be deployed incrementally in

the network. Figure 1 shows a patching server connecting to

a collection of asynchronous clients over a multicast-capable

network.

The selective acceptance of different video frames by the

client can be achieved in several ways. In one approach, the

patching server transmits video frames in various multicast

groups, with clients joining and leaving the groups to receive

the appropriate frames. Alternatively, the client can listen to

all server transmissions of the video, and use a local filter to

decide which frames to keep. This model is particularly appro-

priate for clients on a shared media, such as an Ethernet or a

cable access network. In the general case, when the clients are

not on a shared media, proxies inside the network can filter the

transmission to avoid sending unnecessary frames to the down-

stream clients. In this paper, we assume that join and leave

latencies are small, or that patching is performed by a proxy

that transmits frames to clients on a shared media. Section V

considers extensions that incorporate join and leave latencies.

C. System Model

We next provide a formal model of the patching system, and

introduce notation and key concepts that will be used in the

rest of the paper. Without loss of generality, we consider a

discrete-time system at the granularity of a frame time (e.g.,33

msec for a30-frame/second video). We focus on patching for

a singleN -frame video, since requests for different streams do

not interact. Suppose that clienti requests the video stream at

timeti, and plays framej at timeti+j, wherej = 1; 2; : : : ; N .

Lossless, starvation-free playback is guaranteed if framej is re-

ceived at the client(s) by timeti + j. Frames that arrive before

their playback time are stored in the client’sB-frame worka-

head buffer. When multiple clients arrive simultaneously, the

requests are served as a single batch. Without loss of gener-
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Fig. 1. Video Patching Service:Video streams originate at a multimedia server, and travel through the network, to multiple asynchronous clients. Patching is
performed with the help of a patching server located at the source, or at a proxy server inside the network.

ality, we number the client batches in increasing order of the

request time (i.e.,t1 < t2 < t3 : : :).

We define themost-recent complete(MRC) transmission for

a client i as themost recently initiatedexisting transmission

of the entire video at the time of clienti’s arrival. Existing

patching schemes limit the client to listen to a contiguous set

of frames fromoneongoing transmission – its MRC transmis-

sion. A new multicast-capable transmission channel is created

to transmit whatever frames clienti cannot receive from ex-

isting transmissions. In our model, atransmission channelis

a logical entity that may intermittently transmit different seg-

ments of the video. Multiple channels can therefore be po-

tentially time-multiplexed over the same underlying network

bandwidth.

When a new clienti arrives, the patching server computes

a reception scheduleRSi for that client, and achannel trans-

mission scheduleCSi corresponding to a new channel started

for the client, using some patching algorithm. The transmis-

sion schedule for channelCi specifies which frames are trans-

mitted on that channel, and the scheduled transmission times.

Depending on the service model, these frames are either re-

quested directly by the client, or scheduled for transmission by

the server. For example, consider a client request that arrives

t � B time units after the start of the MRC transmission under

grace or greedy patching. Then, the server transmits framej

at timeti + j on channeli, resulting inCSi;j = j for j � t.

The server does not transmit the remaining frames to clienti,

resulting inCSi;j = 0 (idle slot) forj 2 ft+1; t+2; : : : ; Ng.

The server (or the client) also computes areception sched-

uleRSi for each client requesti, to specify what frame(s) the

client should receive during each time slot. Each entryRSi;j is

a set of one or more pairs(k; l), indicating that framek should

be retrieved from channelCl at timeti+j, for j = 1; 2; : : : ; N .

For example, suppose channelm is the MRC transmission for

client i. Then, under grace or greedy patching witht � B, we

haveRSi;j = f(j; i); (j+t;m)g for j � t, since the client must

receive the firstt frames directly from the server on channelCi,

and simultaneously receive the nextt frames from the MRC

transmission on channelm. The remaining frames are retrieved

from the MRC transmission, resulting inRSi;j = f(j+ t;m)g

for j > t. Note thatRSi;j has at most two entries for these two

algorithms – from the MRC channel and/or the transmission

channelCi, and that the client retrieves a single contiguous set

of frames from each channel.

Existing patching algorithms [1–3] do not fully exploit the

presence of the client workahead buffer to reduce the addi-

tional transmission from the server, particularly whent > B.

As such, we refer to the existing threshold-based patching algo-

rithm using optimal thresholding [2] as RBR (Restricted Buffer

Reuse) in the remainder of the paper. We now present new

patching algorithms that exploit the client buffer space, and the

ability to listen to multiple multicast groups, for more effective

patching. In the next section, we propose a new patching algo-

rithm that can retrieve multiple contiguous sets of frames from

the MRC channel and/or the transmission channelCi. Then,

in Section IV, we present another patching algorithm that al-



lows a client to retrieve frames from any of the existing active

channels.

III. PERIODIC BUFFERREUSE(PBR) PATCHING

In this section, we present a new threshold-based patching

scheme that shares the following restriction with the exist-

ing schemes – a new client is restricted to patch to only its

MRC transmission. The new scheme, calledPeriodic Buffer

Reuse(PBR) maximizes the number of frames that a new client

can retrieve from this most recently initiated ongoing com-

plete transmission, by exploiting client-side buffering more ef-

fectively. After describing the algorithm, we derive an ana-

lytic expression for the transmission bandwidth requirements

for streaming the video to a set of requesting clients. Based

on these results, we compare our proposed patching scheme to

RBR patching.

A. Periodic Buffer Reuse with Thresholding

When a client arrives more thanB time units after the start

of the most-recently initiated complete transmission of a video,

existing patching schemes buffer at most the lastB frames of

the ongoing transmission. This may be too conservative, in that

the client buffer space may remain empty for a long time until

the existing channel starts transmitting the lastB frames of the

video. Existing patching policies always retrieve a contiguous

set of frames from the MRC transmission, and require the client

to receive a separate transmission of all remaining frames. As

such, these schemes do not fully exploit the client buffer to re-

duce the amount of new transmission required from the server.

We now present a new patching scheme that maximizes the

number of frames that are retrieved from the existing complete

transmission, even when the client arrives more thanB time

units after the complete transmission began. In this scheme,

the client retrieves a frame from the earlier transmission when-

ever buffer space is available. Whenever the client must receive

parts of the video from the server, these frames are retrievedas

late as possible, just before their playback times.

A reception schedule and corresponding channel transmis-

sion schedule must be computed based on the client’s buffer

sizeB, and arrival timet relative to the beginningof its MRC

transmission. Whent � B, the client receives the firstt frames

from the server, and the remainingN�t frames from the MRC

transmission, as in RBR patching. Whent > B, the client still

must receive the firstt frames directly from the server. Simulta-

neously, during the firstB time units after the request is made,

the nextB frames are received from the MRC transmission,

and buffered at the client. At timet+B, the client buffer is full,

since the client is still playing frames retrieved directly from

the server. Aftert�B additional time units, the client can start

draining its buffer contents, and receive additional frames from

the MRC transmission. Frames which are transmitted on the

MRC channel between timet+B and2t cannot be received by

the client due to lack of workahead buffer space, and are there-

fore fetched directly from the server, just before their respective

playback times at the client. The process repeats in a periodic

fashion, with the client receiving framesit+1; : : : ; it+B from

the ongoing transmission, and framesit+B + 1; : : : ; (i+ 1)t

directly from the server, fori = 1; 2; : : :, as shown in Figure 2.

As in RBR, our proposed scheme includes a thresholdT .

The patching service initiates a new complete transmission to

serve the new client whenevert > T . Later in the section, we

show how to compute the optimal value ofT for this algorithm.

B. Transmission Overhead for a Client

Intuitively, PBR patching attempts to keep the client buffer

full at all times. Since the client ist time units behind its

MRC transmission, a frame must reside in the buffer fort

time units before it is consumed, freeing the space for stor-

ing another frame. To quantify the benefits of PBR patch-

ing, we derive an expression forD(t), the number of frames

transmitted by the server to a client that arrivest time units

after the initiation of its MRC transmission. PBR has the

same performance as RBR for very large and very small val-

ues oft. In particular, if t � B, the server transmits only

the first t frames, resulting inD(t) = t. Similarly, when

t 2 fN � B + 1; N � B + 2; : : : ; N � 1g, the client can

receive the lastN � t frames from the ongoing MRC transmis-

sion, andD(t) = t. Finally, if the client buffer can store at

least half of the stream (i.e.,B � N=2), thenD(t) = t even

if t > B, since the client buffer is large enough to store all re-

mainingN � t frames of its MRC transmission. Hence, when

t � B, t 2 fN�B+1; N�B+2; : : : ; N�1g, orB � N=2,

we haveD(t) = t, and the client buffers a single contiguous

set of frames from its MRC transmission, as in RBR patching.

The difference between PBR and RBR patching arises when

t 2 fB + 1; B + 2; : : : ; N � Bg andB < N=2, when RBR

can only buffer the lastB frames from the ongoing stream. Un-

der PBR patching, the remainder of the ongoing transmission

is effectively divided into periods of lengtht, whereB frames

are buffered from the ongoing transmission in each interval.

Following the firstt frames, the remainder of the stream con-

sists ofbN�t
t
c complete intervals of lengtht. Then, the end of

the stream consists of a partial interval of length(N � t)modt.

During this partial interval, the client can buffer up toB frames

from the ongoing transmission, and must retrieve any remain-
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Fig. 2. PBR Patching: This figure shows how PBR patching operates for a client with aB-frame workahead buffer arrivingt > B time units after the start of its
MRC transmission. Frames are retrieved either from the MRC transmission, or from a new server transmission channel.

ing frames directly from the server. Consequently,

D(t) =

8>><
>>:

t; if B � N=2; t � B;
or N �B < t < N;

N � (bN�t
t
cB +minf(N � t)modt; Bg);

if B < N=2 and B < t � N �B

For long video clips (largeN ), the contribution of the

minf(N � t)mod t; Bg term is small, and the difference be-

tweenbN�t
t
c andN�t

t
is insignificant. Hence, we approximate

D(t) withN�B(N�t)=t forB < N=2 andB < t � N�B.

This simplifies toN +B �NB=t, resulting in

~D(t) =

8>><
>>:

t; if B � N=2; t � B;
or N �B < t < N;

N +B �NB=t;
if B < N=2 and B < t � N �B

We use the expression for~D(t) to simplify the analysis in the

next subsection.

C. Average Transmission Requirement for a Client

To evaluate the PBR patching policy, we derive a closed-

form expression for the transmission bandwidth requirements

as a function of the client buffer size (B), the length of the

video (N ), the threshold (T ), and the request arrival distribu-

tion. The performance metric we consider isWc, the average

amount of data transmitted to each client using the PBR policy.

The analysis models a discrete-time system, wherefXjg
1

j=0

are discrete random variables denoting the number of client ar-

rivals at times0; 1; : : : respectively. Letfkig1i=0 denote the

times at which the server schedules a transmission of the com-

pleteN -frame video. Under PBR,k0 is the time of the first

request for the video (i.e.,k0 = minf� j(� � 0)and(X� >

0)g). A new complete transmission of the video is initiated

in response to the first client request that occurs more than

T time units after the previous complete transmission (i.e.,

ki+1 = minf� j(� > ki + T )and(X� > 0)g, for i = 0; 1; : : :).

For analytic tractability, we assume that theXis are indepen-

dent and identically distributed. Note that under PBR patch-

ing, clients arriving at timeski; ki + 1; : : : ; ki + T patch to a

different complete transmission than clients arriving at times

ki+1; ki+1+1; : : : ; ki+1+T . In this sense, the behavior of the

patching system after timeki is independent of the behavior

before timeki. This fact and thei.i.d. assumptions allow us to

model the patching system as a renewal process with renewal

points atfkig1i=0. The analysis focuses on the first complete

transmission of the video at timek0 (which is initiated for the

batch of clients arriving at timek0), and the subsequent client

requests that patch to this transmission.

To aid in deriving an expression forWc, we introduce ran-

dom variablesA andW for the total number of client arrivals

within this renewal interval, and the total number of frames

scheduled for transmission by the server to satisfy these clients,

respectively. For a mean request arrival rate of�, the average

number of clients isE[A] = 1+�T . SinceWc = E[W ]=E[A],

it remains to derive an expression forE[W ]. Since simultane-

ous client requests are served as a batch, the transmission band-

width requirement depends only on the likelihood that at least

one request arrives in a single time interval. Letp be the prob-

ability thatXj > 0. Note that the probability distribution of

client arrivals only influences the expression forE[W ] through

the mean� and the probabilityp. The analysis therefore applies



Parameter Definition
B Client buffer size (in units of frame times)
N Length of the video (number of frames)
T Threshold for starting a new transmission (in frame times)
p Likelihood of at least one arrival in a single time unit
� Mean request arrival rate (requests per frame time)
Wc Average transmission per client (number of frames)
W Total data transmitted by the server (number of frames)
A Total request load satisfied by server (number of requests)

Fig. 3. PBR Patching Model: This table summarizes the parameters of the analytic model of PBR patching.

to a wide range of client arrival processes.

To computeE[W ], note that every renewal interval includes

exactly one complete transmission of theN -frame video, and a

partial transmission ofD(t) frames for every time slott beyond

the start of this complete transmission that has one or more

client arrivals. Hence,

E[W ] = N + p

TX
t=1

D(t)

To simplify the analysis, we employ the approximate expres-

sion for ~D(t). As in the expressions forD(t) and ~D(t), the

derivation ofE[W ] considers three cases:

� T � B or B � N=2: In this case,D(t) = t for t =

1; 2; : : : ; T , resulting in

E[W ] = N + p
T (T + 1)

2

On average, after the first batch arrives atk0, pT batches

arrive (over the time intervalfk0 + 1; k0 + 2; : : : ; k0 +

Tg) within the renewal interval, requiring the server to

transmit an average of(T + 1)=2 frames to each set of

clients.

� B < T � N � B andB < N=2: In this case,D(t) = t

for t = 1; 2; : : : ; B, resulting in

E[W ] = N + p
B(B + 1)

2
+ p

TX
t=B+1

D(t)

� N + p
B(B + 1)

2
+ p

TX
t=B+1

�
N +B �

NB

t

�

� N + p
B(B + 1)

2
+

p

�
(N +B)(T �B)�NB ln

�
T

B

��

The first two terms are for batch arrivals over time

fk0; k0 + 1; : : : ; k0 + Bg. The third term is for batch

arrivals over timefk0+B+1; k0+B+2; : : : ; k0+ Tg.

The first approximation in this term stems from using the

expression for~D(t). In the second approximation, the

ln(T=B) term stems from
PT

t=B+1 1=t �
R T
t=B

dt=t =

ln(T=B).

� N � B < T < N andB < N=2: In this case,D(t) = t

for t = 1; 2; : : : ; B and for t = N � B + 1; : : : ; T ,

resulting in

E[W ] = N + p
B(B + 1)

2
+ p

N�BX
t=B+1

D(t)

+p
(T �N +B)(T �N +B + 1)

2

� N + p
B(B + 1)

2
+ p

N�BX
t=B+1

�
N +B �

NB

t

�

+p
(T �N +B)(N �B + T + 1)

2

� N + p
B(B + 1)

2
+

p

�
(N +B)(N � 2B)�NB ln

�
N �B

B

��

+p
(T �N +B)(N �B + T + 1)

2

The first three terms are for batch arrivals over time

fk0; k0 + 1; : : : ; k0 + N � Bg. The fourth term is for

batch arrivals over timefk0+N �B+1; k0+N �B+

2; : : : ; k0 + Tg. As before, the approximations stem from

using ~D(t) instead ofD(t), and replacing
PN�B

t=B+1 1=t

with
R N�B
t=B

dt=t = ln((N �B)=B).

Based on the expressions forE[W ], it is now possible to com-

puteWc = E[W ]=(1+�T ). Then, the optimal threshold value

can be computed, where

Topt = fT j Wc(T ) �Wc(j); j = 0; 1; : : : ; N � 1g:

For given values forB, N , �, andp, the value ofTopt can



be computed by differentiating the expression forWc with re-

spect toT and using numerical methods to determine when the

derivative is zero. Alternatively, the minimum can be found by

performing a binary search over the curve forWc versusT . A

patching server could computeTopt offline, for different values

of the arrival rate�, and use the appropriate threshold online,

based on the actual arrival rate.

The analysis of the patching algorithm in [2] assumes a

continuous time model, Poisson arrivals, and no batching of

clients. The RBR algorithm we consider in this paper is the

discrete time equivalent of that algorithm, and like PBR, uses

batching to serve multiple simultaneous clients. An approach

similar to the analysis used for PBR can be used to analyze this

RBR scheme for a range of client arrival processes.

D. Performance Comparison

As an initial comparison between PBR and RBR, we assume

that clients arrive according to a Poisson process with rate�,

and all clients arriving within the same frame time are batched

and served together. This results inp = 1� e��. First, in Fig-

ure 4, we investigate how the transmission bandwidth require-

ments of PBR vary as a function ofT , using both the exact (us-

ing D(t)) and approximate (using~D(t)) expressions forWc.

The experiment considers a1-hour long,6 Mbps video stream

with average request inter-arrival times of5 and10 minutes,

and clients with225 MBytes of buffer space (enough to store

up to five minutes of the video). Note that the approximation

for Wc is virtually indistinguishable from the exact expression

for small and moderate values ofT (including the regime where

Wc is minimum), and is a moderatelypessimisticestimate for

very largeT (the error is within2 � 4% of the exact value).

This behavior is consistent across a range of buffer sizes, and

arrival rates, suggesting that for practical purposes, it is suffi-

cient to use the approximate expression for computing the op-

timal threshold.

Small values ofT result in high bandwidth requirements,

since most clients cannot take advantage of ongoing transmis-

sions of the same video. AsT increases,Wc decreases rapidly,

as more clients have an opportunity to exploit their buffer space

by patching to an earlier transmission. However, the finite

client buffer size limits the benefit of patching beyond a cer-

tain point. When a client arrives long after the start of its MRC

transmission, most of the video frames for the client must be

retrieved directly from the server. Because of this, the trans-

mission requirements eventually increase for larger threshold

values, since a large number of clients retrieve almost all of

their frames from the server. As a result, the curves have a cup-

like shape, allowing a simple binary search procedure to locate
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the optimal threshold valueTopt.

The optimal threshold valueTopt depends on the client

buffer size, as shown in Figure 5(a). For small to moderate

buffer sizes,Topt is larger thanB for both RBR and PBR patch-

ing. RBR patching has a smaller optimal threshold, since the

algorithm only patches to the lastB frames of the ongoing

transmission whent > B. The larger threshold, along with

the fact that a new client retrieves less frames from the server

under PBR than underRBR, both contribute to the superior per-

formance of PBR. This is shown in Figure 5(b), which plots the

average transmission requirement per clientWc as a function

of the client buffer size when each algorithm uses its respective

optimal threshold. Small buffer sizes offer limited opportu-

nities for patching, resulting in similar performance for PBR

and RBR. As the client buffer size increases,Wc decreases

more dramatically for PBR. For example, for a45-MByte client

buffer (which can store one minute of the video), PBR requires

the server to transmit242 MBytes less per client than RBR, a

saving of15%.

Eventually, increasing the client buffer size offers diminish-

ing returns for both algorithms, and the performance difference

between RBR and PBR starts to decrease, as shown in right

side of Figure 5(b). A large buffer allows more a later client to

receive more frames from its MRC transmission, thereby, push-

ing the optimal threshold higher. However, a higher threshold

allows a longer time gap between a complete transmission and

the clients that patch to it. This in turn requires the server

to transmit a larger number of frames to clients which arrive

a long time after the start of the complete transmission. In

many cases, the server could reduce its overhead by starting

a new complete transmission. As a result, the optimal thresh-

old Topt eventually reaches a maximum value, independent of
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the client buffer size, as shown in Figure 5(a). These results

suggest that most of the benefits of patching can be achieved

with a moderate amount of client buffer space, even for rela-

tively long videos. In a practical patching system, the patching

server could precompute buffer sizes for whichWc is within

x% of the optimal, for different arrival rates.

The arrival rate has a significant influence on the perfor-

mance of the patching algorithms. Figure 6 plots the average

transmissionWc required to satisfy each client, as a function of

the arrival rate�. The experiment considers a45-MByte client

buffer that is capable of storing one minute of the one-hour,6-

Mbps video. Patching offers limited benefits for small arrival

rates, since client requests do not typically arrive sufficiently

close together in time. As� increases, patching is increasingly

effective, andWc decreases. In this region, PBR requires sub-

stantially less bandwidth to serve each client. For example,Wc

is generally about10 � 14% smaller under PBR than under

RBR. In addition, when the number of client requests is larger,

the reduction in the incremental overhead of serving each re-

quest is even more significant. The difference between PBR

and RBR decreases for larger arrival rates, where many clients

arrive close together in time, and can almost completely avoid

retrieving frames directly from the server. In this region, both

algorithms have an optimal threshold that is smaller than the

client buffer sizeB, resulting in very similar performance.

IV. OPTIMAL PATCHING

The effectiveness of RBR and PBR patching depends on se-

lecting an appropriate thresholdT , based on the request arrival

process and the system parameters (buffer sizeB and video

durationN ). However, the arrival rate is not always known

in advance, and may fluctuate across time. In this section, we

present an optimal patching algorithm,Greedy Buffer Reuse

(GBR), that does not depend on knowledge of the client arrival

process, and does not use thresholding. The algorithm allows

a client to subscribe tomultipleongoing transmissions to max-

imize the benefit of patching. The algorithm is incremental in

that it decides the schedule for each client in the order of client

arrival time. Therefore, it does not assume any future arrivals

or arrival patterns. The strategy is greedy in that each client

always fetches from on-going multicast channels as long as the

client buffer does not overflow. Therefore, it reduces the to-

tal number of frames each client has to fetch from the server

directly, given the client buffer size.

This GBR algorithm provides a lower bound on the trans-

mission bandwidth required to serve client requests, and can

serve as the basis of new patching algorithms that have lower

computational complexity. After presenting the algorithm and

establishing the optimality properties, we compare the perfor-

mance with PBR.

A. GBR Algorithm

The GBR algorithm sequences through the frames of the

video and schedules the client to receive a frameas late as pos-

sible– from an ongoing transmission (if possible), or directly

from the server. A frame is sent directly by the server in two

cases – when no ongoing transmission includes this frame, and

when the client does not have enough buffer space to store the

frame from an earlier transmission. Figure 7 presents the pseu-

docode for the algorithm, which computes a reception sched-

uleRSi and a channel scheduleCSi for client i, arriving at

time ti. As discussed in Section II-C, the channel schedule is

a vector, whereCSi;j , j = 1; 2; : : : ; N , is either0 (idle slot)

or a frame numberk, indicating that the server should trans-

mit framek on channelCi at timedj = ti + j. The reception

schedule is a vector that specifies the time and the channel from

which the client should receive each video frame. EntryRSi;j ,

j = 1; 2; : : : ; N , is a set of pairs(k; l), indicating that framek

should be retrieved from channelCl at timeti + j.

The algorithm schedules frame reads from existing channels

into the client bufferas late as possible. The vectorsLT and

LC respectively keep track of the latest time and the channel

on which a particular frame will be sent.LTj is the latest

time that framej is transmitted, considering all of the exist-

ing channels;LCj indicates which channel is responsible for

this transmission. The channel transmission schedule, latest ar-

rival time, and latest arrival channel vectors are all maintained

at the patching server. To receive the different frames at the

correct times, a client should be aware of its own reception

schedule. The patching server might transmit the computed re-

ception schedule to the client. Alternatively, it might transmit
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GBR schedule(Bi; ti;LT;LC)
for j = 1; : : : ; N (consider framej)

if (LTj � ti) and (clienti can store an additional frame for timesLTj ; : : : ; dj � 1))
(i) Add framej to the reception schedule (i.e., add tuple(j; LCj) toRSi;LTj�ti).
(ii) Update buffer occupancy to store an additional frame for timesLTj ; : : : ; dj � 1.
(iii) Do not schedule the frame for transmission on channelCi (i.e.,CSi;j = 0).

else
(i) Schedule framej for transmission on channelCi at timedj (i.e.,CSi;j = j).
(ii) Add framej to the reception schedule (i.e., add tuple(j; Ci) toRSi;dj�ti ).

Fig. 7. GBR Patching Algorithm: This figure presents the pseudocode for processing the request for clienti (client buffer sizeBi), arriving at timei. The greedy
algorithm produces a channel scheduleCSi for the server, and a reception scheduleRSi for the client.

sufficient information (in this case, the latest arrival time and

latest arrival channel vectors) which could then be used by the

client to compute its reception schedule.

The key intuition behind the algorithm is that frames that are

received by the client closer to their consumption deadlines oc-

cupy the workahead buffer for a shorter time and, hence, max-

imize the chances of other frames using the same space. If

framej is already scheduled for transmission by the server be-

tween timeti andti+ j, the client tries to receive the copy that

is transmitted last in that interval. If receiving this frame would

overflow the client buffer, the server schedules a new transmis-

sion of framej at timeti + j, on channelCi. We refer to the

resulting schedule as the greedy reception schedule for clienti.

The computational complexity of the algorithm isO(BN) per

client batch, for client buffer sizeB.

B. Optimality

The GBR algorithm in Figure 7 is an optimal patching algo-

rithm, in that it minimizes the transmission bandwidth required

to satisfy a collection of clients. ConsiderM client arrivals

to the server, where our greedy algorithm computes a channel

and reception schedule for clienti at its arrival timeti, based

on the existing channel schedules. Let the greedy scheduleS at

the server determine the set of reception and channel schedules

of all the clients, in the order of client arrival times.

Theorem 1:Given a client buffer sizeB, the greedy sched-

ule is optimal in the sense that no other schedule requires fewer

frames from the server.

The proof of the theorem follows from proving the following

claim.

Claim: We can convert any valid scheduleS to the greedy

schedule via a series of transformations, each of which does

not increase the number of frames that the server delivers.

Proof: We work in the order of client arrival times. For each

client, find the first framej that is received in a non-greedy

fashion. We will transform the schedule without increasing the

number of frames that the server delivers so that the client re-

ceives framej in a greedy fashion:

� Case 1:Framej is multicast betweenti andti + j and is

received before the last multicast of the frame in schedule

S.

In this case, we can transform scheduleS so that framej

is received at the last multicast of that frame. The resulting

scheduleS0 will not require more frames from the server

and the client will not overflow its buffer since the frame

is received later.



� Case 2:Framej is scheduled to be multicast betweenti
andti + j and the client buffer will not overflow if frame

j is received at the last scheduled multicast of the frame.

However, in scheduleS, framej is transmitted afresh to

this client at timeti + j.

We can construct another scheduleS0 as follows. Sched-

ule S0 lets the client receive framej at the last multicast

of that frame. If there is another client that receives frame

j at time ti + j, we multicast framej at the time that

the earliest arriving such client needs to playback framej.

Also, other such clients retrieve framej at this time. If no

such client exists, the rest of schedule remains the same.

ScheduleS0 is still valid, since each client still receives

the frame before its playback time. Moreover, no buffer

will overflow, since we only let some clients receive data

later. Finally, note that scheduleS0 does not transmit more

frames than scheduleS.

Note that a consequence of Theorem 1 is that the GBR patch-

ing algorithm is also locallyoptimal. That is, this algorithm re-

sults in the server transmitting the minimum number of frames

afresh to any new client.

C. Performance Evaluation

In Figure 8(a), we compare the optimal patching algorithm

(GBR) against PBR patching using the optimal PBR thresh-

old, as a function of the client arrival rate�. The experiment

considers a one-hour,6-Mbps video stream. Each point in the

graph is the average over six independent simulation experi-

ments, each consisting of720 distinct batch (of one or more

clients) arrivals. The individual client arrivals are generated by

a Poisson process, and multiple clients arriving within the same

time unit (frame time) are batched and served together.

For a high arrival rate with1=� = 10 seconds, the server

overhead per client for PBR is60% higher than that for GBR,

a difference of93 MBytes. As� decreases, clients arrive fur-

ther apart from each other, reducing the effectiveness of patch-

ing, resulting in higher values ofWc for both algorithms. For

1=� = 2 minutes, PBR results in a value forWc that is36%

higher than GBR; the corresponding difference between PBR

and GBR is312 MBytes. These trends indicate that there is

substantial potential for improving the performance of patch-

ing beyond that of the algorithms in literature.

Although the optimal patching algorithm does not explicitly

limit the number of simultaneous channels for each client, the

results in Figure 8(b) show that a client rarely listens to more

than three channels at a time. The graph plots the proportion

of time that a client listens to less than or equal tox channels,

across several values of�. Small values of� offer limited op-

portunities for patching, and the client spends most of its time

listening to just one channel. For example, when1=� = 3:5

minutes, the client spends17% of the time idle,67% of the

time listening to one channel, and about1% of the time listen-

ing to three or more channels. For a high arrival rate, clients re-

ceive more frames from existing transmissions. However, even

for small client inter-arrival times, the number of simultaneous

channels is still quite low. For example, for1=� = 30 seconds,

40%, 37%, and14% of the total time is spent idle, listening to

one and two channels respectively. Less than1% of the time

is spent listening to more than5 channels. This indicates that

most of the savings in transmission can be accrued if clients

are able to listen to three or four channels simultaneously. The

results also suggest that introducing an explicit constraint on

the number of simultaneous channels (i.e., number of tuples in

RSi;j) should not degrade performance substantially.

V. ONGOING WORK

As ongoing work, we are pursuing a number of extensions

to PBR and optimal GBR patching:

� Performance evaluation of PBR: Extending the work

in Section III, we are comparing PBR and RBR patch-

ing under different client arrival processes. These exper-

iments involve varying the values ofp and� in the an-

alytic model, allowing us to study the impact of bursty

arrivals on the relative performance of the two threshold-

based patching schemes. In addition, we are extending the

analysis to support batching of client requests that arrive

within � time units of each other. Finally, we are consid-

ering more flexible thresholding policies that incorporate

information about thenumberof client requests that have

arrived since the start of the previous complete transmis-

sion, to allow PBR’s threshold value to adjust to changes

in the arrival process across time.

� Computational complexity of GBR algorithm: The

GBR algorithm as presented in Section IV has a com-

plexity of O(BN) per client batch. We are investigating

another algorithm for computing thesamechannel and re-

ception schedules that reduces the influence of the client

buffer size on the algorithmic complexity. To further re-

duce the computational overhead, we are evaluating a gen-

eralization of GBR that divides a video into consecutive

g-frame chunks, and applies the same scheduling decision

to all frames within a chunk. This effectively reduces the

client buffer size toB=g and the video length toN=g,

and also reduces the number of client batches that must

be considered, at the expense of restricting the opportuni-

ties for patching. Still, the technique should be effective

for a range of smallg values.
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� Limited client I/O bandwidth under GBR: Thelast mile

network bandwidth constraints, or disk or memory band-

width constraints, may keep the client from retrieving data

from more thanK simultaneous transmission channels.

The results in Figure 8(b) show that GBR rarely requires

more than three simultaneous transmissions to the same

client. To avoid violating any constraints onK, we con-

sider a simple heuristic extension to the optimal GBR al-

gorithm. If retrieving a frame from an ongoing transmis-

sion would exceed the client I/O bandwidth, then a sepa-

rate copy of the frame is scheduled for transmission from

the server at the frame’s playback time. Repeating the

process across the sequence ofN playback times removes

any violations of the constraintK.

� Dynamic join/leave from multicast groups: If the patch-

ing server is not connected to the set of clients via a shared

medium, the overhead of joining and leaving multicast

groups would limit the client’s ability to switch between

transmission channels at the frame level. Dividing the

video stream intog-frame chunks, as discussed above,

would impose a minimum time between joining and leav-

ing multicast groups. As an alternate approach, the client

could subscribe to a set ofK transmission channels for the

duration of the transfer, and apply local filtering to store

only the necessary video frames. This approach avoids

dynamic joining and leaving of multicast groups, at the

expense of consuming additional network bandwidth to

transfer frames that the client does not need (or the use of

network proxies to perform the filtering). We are investi-

gating variants of GBR that generate schedules that apply

a singleset ofK transmission channels to each client.

� Blocking service model: The model in Section II as-

sumes that the server and the network have sufficient re-

sources to satisfy all client requests. This approach is

a reasonable way to compare the various patching algo-

rithms, and to determine the amount of resources required

for a well-provisioned service. However, in a real sys-

tem, the patching service should be able to block a client

request, when necessary. The simplest approach applies

the existing patching algorithms to compute the reception

and channel transmission schedules for the new client, and

rejects the request if the server or the network cannot sat-

isfy the resource requirements of the schedule. Alterna-

tively, the patching server could compute schedules that

reduce the likelihood of blocking future client requests.

Extensions of the GBR patching algorithm can exploit

any available latitude in scheduling frame transmissions

for the new client. For example, the server could transmit

a frame early (subject to the client buffer constraint) to re-

duce the total number of frames that must be sent in any

given time slot.

VI. CONCLUSIONS

The high transmission bandwidth requirements of streaming

video makes it a challenging problem to provision network re-

sources for delivering such media to remote clients. In this pa-

per, we examinedpatching, a technique for reducing the trans-

mission to a client, by allowing sharing of data from existing,

ongoing transmissions of the same video. We introducedPe-

riodic Buffer Reuse(PBR), a new patching scheme that maxi-

mizes the amount of data that a client can retrieve from the most

recently initiated complete transmission. Similar to existing

patching schemes, PBR employs a threshold to determine when

to start a new complete transmission of the stream. We ana-

lytically derived a closed-form expression for the transmission

bandwidth requirements for PBR patching, and showed how

to determine the optimal threshold value. Our performance

comparison showed that PBR can significantly outperform ex-

isting patching schemes. Then, we presentedGreedy Buffer

Reuse(GBR), a patching algorithm that provably minimizes



the server transmission bandwidth requirements. Simulation

experiments showed that GBR patching offers a sizeable reduc-

tion in transmission overhead over any of the threshold-based

schemes, and rarely requires the client to listen to more than

three simultaneous transmissions. This algorithm can serve as

the basis of new patching algorithms that have lower computa-

tional complexity, and simpler implementation.
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