
MHealth: A Real-Time Multicast Tree Visualization and Monitoring Tool �

David B. Makofske Kevin C. Almeroth
Starburst Softwarey Dept of Computer Science

150 Baker Avenue Extension University of California
Concord, MA 01743-2117 Santa Barbara, CA 93106-5110

david makofske@starburstsoftware.com almeroth@cs.ucsb.edu

Abstract
The exponential growth of the Internet combined with the

increasing popularity of streaming audio and video content
are pushing Internet bandwidth constraints to their limits.
Methods of managing and more efficiently utilizing the ex-
isting bandwidth are becoming increasingly vital. Multicas-
ting Internet content, especially streaming audio and video,
can provide enormous bandwidth savings. A decade of ef-
forts at deploying multicast combined with the rising need
for better traffic management for bandwidth-hungry audio
and video applications has led to significant momentum for
multicast implementation. One of the remaining barriers
to widespread adoption of multicast in the Internet is the
lack of multicast monitoring and debugging tools. To ad-
dress this need we introduce MHealth, a graphical, near
real-time multicast monitoring tool. MHealth utilizes ex-
isting tools to collect comprehensive data about Real-Time
Protocol (RTP) based streaming audio/video sessions. By
using a combination of application-level protocol data for
participant information and a multicast route tracing tool
for topology information, MHealth is able to present a mul-
ticast tree's topology and information about the quality of
received data.

1. Introduction
Recent exponential growth in the Internet has brought

the total number of connected people up to 70 million at the
end 1998. In addition to the shear volume of new users, the
amount of the data transfered has grown as more applica-
tions use innovative media like hypertext, pictures, audio,
video, etc. One of the most significant examples of appli-
cations that are more bandwidth-intensive are those that use
streaming media. The net result is that an increase in both
the number of users and the amount of data transfered has

�This work has been supported in part by a research grant from Cisco
Systems Inc. through the University of California MICRO Program.

yThis work was performed as part of David Makofske's Masters Thesis
at the University of California, Santa Barbara.

produced considerable strain on the existing Internet. This
has led to a number of highly publicized recent network and
server failures when major events such as political scan-
dals, international crises, or entertainment events attracted
users to request streaming audio/video content en mass. The
growth trends suggest these events, and the congestion they
cause, will continue to grow.

Wide area bandwidth is clearly not keeping up with cus-
tomer demand. Furthermore, the ability of end stations to
send/receive increasing volumes of data will only increase.
All of this can be coupled with the rapidly increasing band-
width capacities in the “last-mile”, one of the few remaining
bottlenecks helping to restrict user data flow into the Inter-
net. As computers become faster, and cable modems and
digital subscriber lines (DSL) become more common, In-
ternet congestion will only become worse. Methods must
be implemented to manage and utilize the existing Internet
bandwidth more efficiently. Bandwidth management takes
many forms, such as moving the content closer to the re-
questers (caching and replication), more conservative send-
ing techniques (request aggregation), and increasing the
functionality provided by the routers (multicast and quality
of service techniques).

Multicast offers a compelling model for streaming au-
dio and video. This is especially true when it is used in
broadcast-style applications, i.e. where a pre-recorded or
live multimedia stream is sent to many receivers simulta-
neously. In contrast to unicast, which sends from a sin-
gle source to a single destination, multicast allows a source
to send data once to a subset of interested receivers. The
source sends packets to a multicast group address, and the
network routers replicate the packets when the paths to the
receivers diverge. Each multicast-enabled router ensures
that packets flow on the correct links to reach all of the
receivers who have joined that multicast address. When a
streaming media broadcast is sent with unicast there is a
high redundancy of data transfer on each network link, but
with multicast, a single stream is likely to never traverse



the same network link more than once. With high quality
MPEG at several Mbps per stream, this would greatly re-
duce the load on the server and the network, especially as
the number of receivers increased into the hundreds, thou-
sands, or more. Depending on the location and number of
receivers, the bandwidth saved with multicast over unicast
can be many orders of magnitude.

Despite the conceptual simplicity of multicast and its ob-
vious benefits, its implementation is difficult. After almost
a decade of research and implementation efforts, multicast
has been deployed as the research-oriented Multicast Back-
bone (MBone)[1, 2]. It is only beginning to be deployed
by Internet Service Providers (ISPs) and used by service-
oriented companies. However, the growing popularity of
real-time audio and video traffic and the aforementioned
network failures have created a compelling business justi-
fication for multicast. Organizations such as the IP Mul-
ticast Initiative (IPMI) have been working to educate con-
sumers about the benefits of multicast, and major ISPs such
as UUNet and Sprint have been implementing and promot-
ing multicast as a network service. Broadcast.com, a lead-
ing provider of streaming media content on the Web, has
been actively encouraging the use of multicast, and com-
mercial tools such as Real Network's RealVideo and Mi-
crosoft's NetShow are now multicast enabled. Most router
manufacturers now include multicast capabilities as a stan-
dard feature on their routers.

Many ISPs are still reluctant to enable multicast on their
networks, however, because of its complexity and funda-
mental differences from unicast. There are few tools avail-
able for monitoring and debugging multicast networks, and
the tools that do exist are understood by only a few experts.
In addition, many of the current tools mimic unicast tools,
and provide information on a single end-to-end path from a
source to a receiver instead of the entire multicast tree. Oth-
ers concentrate on individual participant information only
and ignore the routes entirely. There is a strong need for
multicast debugging and monitoring tools that are graphi-
cal, intuitive to use, and display multicast as a one-to-many
network architecture. While some tools for multicast mon-
itoring exist, there are no tools which work in today's In-
ternet and provide both tree visualization and distribution
quality feedback in near real-time. As more and more com-
panies and ISPs activate multicast in their networks, this
will become an increasingly critical need.

This paper describes MHealth, the Multicast Health
Monitor, which is a graphical, near real-time multicast mon-
itoring tool. MHealth handles the unique characteristics
of multicast traffic by collecting a comprehensive set of
data about an MBone session. By using a combination
of application level protocol data about group participants,
and a multicast route tracing tool for topology information,

MHealth is able to discover and display the full network
tree distribution and delivery quality. MHealth also pro-
vides data logging functionality for the purpose of isolating
and analyzing network faults.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work in the field of multicast net-
work monitoring and MBone data analysis. Section 3 intro-
duces the MHealth tool, discussing its design, implemen-
tation, and some observational analysis. Section 4 evalu-
ates the effectiveness and issues of MHealth, and section 5
presents future work. Section 6 summarizes the work and
presents conclusions.

2. Related Work
There are a number of existing tools for monitoring,

debugging, and analyzing multicast traffic and data flow.
These tools have mostly evolved out of a need to debug con-
nectivity problems and multicast routing bugs. As multicast
has evolved into more of a commercial service, these tools
have begun to lose some of their utility. Today's system ad-
ministrators need tools more suited for identifying whether
multicast traffic and trees are “healthy”, i.e. whether a
group's traffic is of acceptable quality and whether traffic
is reaching all of the group's members and no one else.

One of the most important tools in use today is
mtrace[3], a multicast version of traceroute.Mtraceworks
by starting at the receiver and traces thereversepath back
to the source. The reverse path is used since this is how
group members are added to the group; receivers send join
requests toward the source using the path the receiver would
use to reach the source. Mtrace is one of the primary data
sources used by MHealth to visualize a multicast tree, and
will be discussed in detail later in the paper.

Several tools provide statistics based on Real-Time
(Control) Protocol (RT(C)P)[4] packets. The MBone
vat tool is one of the primary MBone audio tools and
it uses RTCP packets to create a list of group mem-
bers. RTPmon[5] collects and displays this information
along with real-time statistics about packet loss and jit-
ter. Mlisten[6] uses RTCP packets to collect and archive
group statistics for all MBone groups advertised through
sdr. MultiMON[7] monitors the multicast traffic on a lo-
cal network segment and provides graphs on traffic type and
amounts.

In addition to these tools, there are several SNMP-based
management tools. Merit Network has developed a suite of
tools including:mstat, mrtree, andmview. Mstat[8] allows
an SNMP-enabled router to be queried for information,
including routing tables and packet statistics.Mrtree[9]
uses cascaded SNMP router queries to provide a text-based
representation of a particular multicast group's topology.
Mview[10] is a tool for visualizing MBone topology as
well as monitoring and collectingmrinfo, mtrace, mstatand

2



mrtree. The topology construction function requires a user
to click on a node and specify one or more information
finding actions. These tools are well-suited for use within
an administrative domain because a system administrator
will have the proper passwords. Unfortunately, the utility
of these tools is somewhat limited in the inter-domain.

Several papers have been published on the analysis and
behavior of multicast groups in the MBone. In work by
Handley, tools were written to log RTP and RTCP packets
and collectmtracesfor an MBone session[11]. These were
later used to manually create a picture of the multicast tree
and various statistics about the links in the tree. There were
no results presented in the paper about how these techniques
could be extended to handle real-time operation.

Yajnik, et al. characterize a controlled MBone session
by analyzing packet loss statistics from 11 participating
sites[12]. The data is examined for spatial and temporal cor-
relation. Almeroth and Ammar usemlistento collect group
membership data for all MBone sessions over an extended
period of time[13]. Analysis efforts focused on modeling
temporal, spatial, inter-session and intra-session character-
istics.

3. The MHealth Tool
In this section we present the MHealth tool. First the

design of MHealth and how it integrates the available data
sources is discussed. The user interface of MHealth is
then presented, and the section concludes with observa-
tional analysis of MHealth performance.

3.1. Design
The design of MHealth is such that it necessitates some

background on how streaming audio and video are sent on
a multicast channel. Since multicast transmission for real-
time streaming applications is one-to-many, TCP is not a
suitable protocol. Every TCP packet requires an acknowl-
edgment, and requiring many receivers to acknowledge ev-
ery packet would soon overwhelm the source with acknowl-
edgments. This situation is referred to asACK implosion. In
order to scale to large number of receivers IP multicast usu-
ally uses UDP as its transport protocol. UDP provides a
connectionless service and does not guarantee against lost,
duplicated, or out of order packets. This leaves the issue
of how to send real-time data over multicast without all of
the services of TCP. UDP's connectionless nature means
that without connection-oriented endpoints for data flow, it
is difficult to determine the receivers of a multicast stream
and the routes the data must take to reach them. In addi-
tion, real-time data has very specific requirements in terms
of inter-arrival timing beyond what even TCP can provide.
And while data should be delivered as accurately as pos-
sible, the real-time nature of streaming media prohibits re-
transmission of lost packets.

As a solution to these problems, real-time streaming
data (both unicast and multicast) typically uses an applica-
tion level protocol, sometimes called an Application Layer
Framing (ALF)[14] protocol. An ALF protocol can take
the form of a separate protocol layer between the applica-
tion and the transport layer, or it can be integrated into the
application itself. ALF protocols add important functional-
ity such as reordering and packet timing on top of UDP's
sequence numbers and port multiplexing services.

One of the most common ALF protocols used for stream-
ing real-time audio and video is the Real Time Protocol
(RTP)[4]. RTP is used in the MBone tools as well as in
several commercial streaming tools. RTP provides payload
type identification, sequence numbering, and timestamping
on top of UDP. RTP includes a control protocol called the
Real Time Control Protocol (RTCP), which allows for par-
ticipants in a multicast group to report their membership
and the quality of their reception.

Multicast monitors cannot rely on end-to-end state for
network monitoring the way TCP-based tools can. There
is no transport level connection setup that can be used to
establish the participants in a multicast group. The state
in multicast networks is distributed among the group par-
ticipants and network elements, so alternative mechanisms
must be utilized to do monitoring. There are two basic en-
tities to gain multicast group information from: the routers,
and the participants themselves. Participants can only pro-
vide data at the application level, which is precisely the type
of feedback that RTCP was designed to provide. Routers
can be queried directly by using SNMP or by dumping and
examining their state tables. Although, for security reasons,
this is unlikely to be possible on a end-to-end basis in the
Internet. Routers can also be indirectly queried through a
traceroute-based facility likemtrace. Many existing tools
have relied exclusively on one approach or the other, either
collecting only application level feedback or collecting only
router-based information. Tools that do use both methods
typically display the results separately and do not attempt
to integrate them.

MHealth integrates both application layer data and
router-based information obtained frommtraceinto a sin-
gle monitoring tool. MHealth relies on the application layer
protocol information from RTCP packets to determine the
group membership and the delivery quality (jitter, delay,
and loss) at each participant. Once MHealth has established
a group's participants, themtraceutility is used to trace the
hops from each receiver to the source. As the point-to-point
topology is established for each receiver, this information
is combined into a tree data structure and graphically dis-
played. The details of these data sources are now described
in detail.

3



3.1.1. Real Time Control Protocol
The Real Time Control Protocol (RTCP) specification is de-
fined as part of the Real Time Protocol (RTP) standard. The
RTP portion of the protocol applies application level fram-
ing for real-time data, providing payload type identification,
sequence numbering, and timestamping. The RTCP portion
of the protocol is a periodic transmission of control pack-
ets by all participants to all other participants in the session.
In the MBone, RTCP packets are usually sent on the same
multicast address as the RTP data itself, but on a different
UDP port. Typically the data port is an even number,n, and
the control port isn+ 1.

RTCP is described as having four primary functions.
First, it provides feedback on the quality of the data trans-
mitted to the multicast group. This is a critical transport
function of RTP and can be used to develop and imple-
ment flow and congestion control, adaptive encoding tech-
niques, and fault diagnostics. Second, RTCP carries a per-
sistent transport-level identifier for an RTP source called the
canonical name. It is used to synchronize data from mul-
tiple tools (such as audio and video). Third, RTCP packets
are used by each participant to estimate the group size. This
estimate is important for scaling the RTCP send rate of each
group member. This function helps make RTCP scalable,
and prevents members in large groups from causing conges-
tion solely based on control traffic. The fourth function of
RTCP is for distribution of group membership information.
This is meant to be used in a “loosely controlled” manner,
however, and is not a reliable accounting mechanism.

Each RTCP packet consists of one or more packet sec-
tions. The key sections used by MHealth include the fol-
lowing: thesender report, the receiver report, the source
description, and theBYEsection. If the packet sender is an
RTP source (as well as a receiver), it will include asender
reportwhich contains information about the RTP data being
sent. If the packet sender is receiving RTP data from one or
more sources, they will send onereceiver reportper RTP
data source, up to a maximum of 32. These reports con-
tain reception statistics about each data source. Thesource
descriptionsection contains one or more text elements, in-
cluding the canonical name, describing the RTCP sender. If
theBYEsection is present, it indicates the RTCP sender is
leaving the multicast group. ABYEpacket should be the
last RTCP packet heard from a group member, unless they
rejoin the group. Because aBYEpacket could be lost, some
mechanism must be used to eventually remove group mem-
bers. A receiver will “time out” if no RTCP packet has been
heard from the receiver for a reasonable period of time.

In order for RTCP to scale to potentially very large mul-
ticast sessions, the send rate for RTCP packets must be con-
trolled. If the amount of RTCP traffic was not controlled,
it would grow linearly with the number of group members.

For large groups, this could swamp the group with control
information in a manner similar to a group-wide ACK im-
plosion. To avoid this problem, each group member uses an
algorithm to determine an RTCP send interval. This interval
decreases as the group membership increases. In small ses-
sions RTCP packets are usually sent in 5 second intervals,
but the algorithm dictates that the RTCP packet send rate
should not exceed 5% of RTP data bandwidth. Of interest to
the MHealth tool is the granularity at which RTCP packets
are sent. Large groups do not send RTCP reports frequently
and so it is difficult to do quality assessment on a fine gran-
ularity. Dealing with large groups will be addressed later in
the paper.

The richness, granularity, and completeness of the data
provided by RTCP make it a logical choice as a data source
for multicast group monitoring and management. Few other
mechanisms provide any kind of information similar to that
provided by RTCP. The RTP specification strongly recom-
mends that all participants send RTCP packets, and most
implementations currently do. It is still possible that not all
RTCP packets are received. Some of the reasons include
firewalls, UDP packet loss, or tools that do not conform to
the RTP specification. However, RTCP packets are the only
way to determine group membership of an MBone session
without dumping router statistics. Currently, RTCP is the
best mechanism available for a tool like MHealth to ascer-
tain group membership information.

3.1.2. Mtrace Utility
Once participants in a multicast session are identified, the
topology must be discovered. Themtraceutility, a multi-
cast version of traceroute, can provide this information[3].
One of the disadvantages ofmtraceis that it only gives you
the route from one participant to the source. So MHealth
must perform numerousmtraces, one for each participant
in a session. The tree topology is then constructed by com-
bining the common nodes.Mtracealso provides additional
information such as total multicast packets per hop, group-
specific hop counts, and packet loss per hop. This informa-
tion is collected and displayed in MHealth.

Although the output frommtraceis clearly analogous to
traceroute output, the underlying tracing mechanism has a
significantly different design. A unicast traceroute sends a
series of packets with increasing Time-to-Live (TTL) val-
ues. As the TTL expires at each hop, an Internet Con-
trol Message Protocol (ICMP)[15] packet is returned to the
source. This ICMP packet identifies the router at which the
TTL expired. By listing the series of routers that return
ICMP messages, an estimate of the path from the source
to the destination can be built.

This approach cannot be used in multicast because ICMP
TTL expiration messages are explicitly suppressed. This
is necessary because of the heavy reliance of IP multicast

4



on TTL scoping. If ICMP messages were not suppressed,
they would likely flood the source of a large group. This
necessitated a different technique for determining the mul-
ticast path from a source to a receiver. The approach taken
has been to require all multicast routers to have customized
functionality to respond to multicast trace requests. While
this increases the overhead and complexity of the router, it
does provide an important tool and crucial diagnostic infor-
mation.

Because of the way multicast trees are constructed, the
tracing mechanisms for multicast are substantially different
than the techniques used for tracing a unicast path. Each
router in a multicast tree does not know who its receivers
are, it merely knows the incoming and outgoing interfaces
that each distinct group and source pair should flow on. This
state is maintained by the multicast routing protocol for in-
termediate hops, and by the Internet Group Management
Protocol (IGMP)[16, 17, 18] for the last hop (leaf) router.
As a result, it is not possible to use the unicast traceroute
method of tracing from a source to a particular receiver.
At each router only the outgoing interfaces that the traffic
should flow on is known. Which of those outgoing paths
a given receiver is on cannot be determined. The solution
is to start at the receiver's location, and travel backwards
towards the source. Since each router knows the incoming
interface (from the source) of a group's data, the path can
be determined hop-by-hop from the receiver to the source.
This is called areverse path lookup.

The reverse path lookup requires that routers be able
to process a specialmtrace IGMP Query packet. This
packet is multicast on the ALL-ROUTERS multicast ad-
dress (224.0.0.2). The last hop router of the receiver identi-
fies that it is the last hop router for a particularQuerypacket
received and begins anmtrace. The last-hop router appends
its data to the packet; alters the packet type fromQuery
to Request; and forwards the packet via unicast to the pre-
vious router (the incoming interface for the source-group
pair being traced). This continues up the path to the source
until it reaches the router directly connected to the source.
This router realizes the source is directly connected to it,
appends its own information to the packet, alters the packet
type from aRequestto aResponse. The final packet is then
either sent via unicast or multicast (according to packet field
settings) to themtraceinitiator. If a router along the reverse
path is having trouble contacting the next upstream router,
the mtrace initiator will be sent the trace data up to that
point. If the previous hop router cannot be contacted within
a period of time, themtracewill timeout and fail.

The added functionality required by the router allows
mtrace to be more flexible and informative than a nor-
mal traceroute. One of the most important differences be-
tweenmtraceand tracerouteis that mtraceallows third-

party mtraces, i.e. the initiator need not be the source or
the destination. The IGMP query request header includes
the multicast group address, the source address, the destina-
tion (receiver) address, and the response address where the
mtracedata should be returned. In addition to this flexibil-
ity, mtracecollects and returns more comprehensive infor-
mation. Data returned includes (1) the total number of pack-
ets received and transmitted on an interface, (2) a group-
specific count of incoming and outgoing packets (if a group
is specified), (3) the multicast routing protocol used, (4)
the TTL required to reach the particular router, and (5) the
explicit error messages when anmtracecannot complete.
Data for each router is appended to theRequestpacket.

MHealth relies heavily onmtraceand the data it collects.
A decision early in the prototyping effort led us to run an ex-
isting implementation ofmtraceand then parse the results.
We believed the complexity of implementingmtracefrom
scratch would have been excessive for a prototype. In hind-
sight, it would have been more efficient and offered better
flexibility because it would not require an installedmtrace
tool.

3.1.3. Mtracing Hierarchy
When MHealth was first run on large groups, there were a
fairly significant number ofmtracefailures. On further in-
vestigation, several problems were isolated which required
different command line options to correct. In many cases,
the sets of options required are orthogonal and cannot be
combined into a single execution of anmtrace. The net
result is an increase in the percentage ofmtracesthat are
successful.

Up to three differentmtracesare attempted for each re-
ceiver before MHealth moves on to the next receiver. First,
a standardmtracefrom a receiver to the group source is at-
tempted. If it fails, agateway mtraceis attempted. One of
the major reasons why an initialmtracefails is because the
Querycannot find the last hop router. A gatewaymtrace
solves this problem by explicitly contacting the last hop
router via its unicast IP address rather than attempting to
multicast themtrace request. However, this requires the
mtrace initiator to know the last hop router. This is de-
termined by doing anmtrace from the machine running
MHealth to the receiver. Thisdiscovery mtrace, if success-
ful tells MHealth the IP address of the last hop router.

Finally, if the gatewaymtracefails, a reverse mtraceis
attempted. The idea is that the tree from the source to the
receiver is the same as from the receiver to the source. Al-
though this is not always the case, it is better than having no
route data at all. No statistics can be collected for a reverse
mtrace, because the reversemtraceonly displays statistics
on data flowing from the receiver to the source. By try-
ing these three differentmtraces, the successful trace per-
centage increased substantially. Results showed the average

5



Loss Color
loss < 2% green
2% < loss < 10% yellow
loss � 10% red
loss not reported pink

Table 1. Color coding by loss.

success rate increased from 67% to 80%.

3.2. User Interface

In prototyping, the decision was made to write MHealth
in Java for the dual reasons of cross-platform operation and
ease of GUI prototyping. Despite concerns that Java would
be too slow for intensive real-time processing, this did not
turn out to be the case1.

When a user starts MHealth, they provide a multicast IP
address and a port number, either on the command line or
in a startup menu. The user also has the option of enabling
logging at this point. The logging function writes to a file
all the RTCP packets received and themtracesperformed
throughout the session. MHealth then begins listening for
RTCP packets and builds a source and receiver list. This
list of sources and receivers is displayed on the MHealth
window as they are identified. The sender(s) are displayed
across the top of the screen and the receivers are displayed
across the bottom of screen, from left to right in the or-
der they are first heard. The domain name of the host is
displayed if it fits within the box, otherwise the IP address
is displayed. Data quality information in the form of the
packet loss rate and jitter is also obtained from the RTCP
packets. As the session sources and receivers are displayed,
they are color coded according to their loss percentage (see
table 1). The color code is updated with each new RTCP
packet received.

Once MHealth has a source and receiver list, it can start
building the multicast tree. Immediately after at least one
source and receiver are identified, MHealth begins execut-
ing mtracesto determine< source; receiver > paths.
Once a route is determined, the path is drawn graphically
on the screen. Themtracepacket loss statistics are reported
below each hop. These statistics are represented as a frac-
tion of packets lost over total packets expected. Measure-
ments are made for an interval of time measured right be-
fore the router was queried, e.g. 5/265 would indicate that
265 packets were expected but only 260 were received. The
computed percent loss is used to color code the routers in
the same way the senders and receivers are coded. One dif-
ference is that routers with no or low loss are colored white

1All tests and data collection were run on a Sun Sparc Ultra 1.

instead of green to more clearly distinguish them from end
hosts.

Occasionallymtracewill report a negative number of
packets lost, such as -5/265. This -5 indicates that the router
actually received 270 packets out of 265 expected. Extra
packets are probably due to unnecessary router duplication.
Every once in a while, packet duplicates will be signifi-
cantly larger, possibly suggesting flooding or routing loops
are occurring. An important note is that packet duplication
for any reason can mask loss. That is, -5/265 could mean
that no packets were lost and 5 packets were duplicated, or
it could mean that 10 packets were lost and 15 packets were
duplicated. There is no way to differentiate these two cases.
MHealth always interprets a negative packet loss as no loss.

Figure 1 shows a snapshot of the MHealth tool. The tool
has displayed a small multicast tree. Once MHealth has
traced all receivers in a session, it loops back to the begin-
ning of the receiver list and continues repeatingmtracesto
keep the loss data and routes up to date.

Becausemtraceis a point-to-point path discovery tool,
there are some issues in combining its results into a tree.
The first issue is how to deal with different reported packet
statistics for overlapping links in the tree. In this case,
MHealth keeps only the most recent statistics. As each
new mtraceis executed and its results updated in the tree,
it will overwrite any existing hop data on shared tree nodes.
Since all of these receivers have at least one hop in com-
mon, some of the data overwritten will be from other re-
ceivers. In Figure 1, for example, the last receiver traced
was the one on the far right, 205.207.237.47. Therefore,
the packet loss statistics for the shared links in the path
to 205.208.237.47 are actually the loss reported from the
mtraceto 205.208.237.47.

Over time, the membership and topology of the group
may change. As RTCP packets are heard from newly joined
receivers, they are added to the bottom of the MHealth win-
dow, and will eventually be traced. If an explicit RTCPBYE
packet is received, the receiver and the portion of the topol-
ogy that was unique to it will be immediately removed from
the tree. If theBYEpacket is lost, the receiver will eventu-
ally be timed out of the session. After the first few minutes
without receiving a packet, the receiver's box will turn gray
as a warning that it is in danger of timing out of the session.
After a few more minutes, the receiver and their associated
topology will be removed from the tree.

Topological changes may occur as a receiver is traced
multiple times. Initially the idea was to keep all topology
information in the tree, so that route flapping and changes
could be visually identified. However, when route flapping
occurred frequently, this made the tree confusing and dis-
tracting. The approach was changed to only show the most
recent topology traced for each receiver, and route flapping

6



Figure 1. A sample MHealth screen shot of a small multicast tree.

7



and route changes are relegated to post-session log analy-
sis.

3.3. Interacting with MHealth
Once started with a valid, active multicast group,

MHealth begins to draw a multicast tree automatically. No
additional user interaction is required. However, MHealth
is interactive, and any node can be clicked on at any time.
This provides more information about that node. The op-
tions and information displayed vary according to the type
of node. All nodes have the option ”View Stats”. Receivers
have the additional option of ”Mtrace Next”, which allows
a user to alter themtraceorder. Routers have the options
of ”Prune” and ”Expand” to create a custom view of the
multicast tree. If there is more than one source detected in
a session, users have the option to invoke ”Make Root” on
a different source, which will rebuild the tree with the se-
lected source as the new root. Each of these options is now
explored in more detail.

3.3.1. View Stats
”View Stats” can be invoked on any type of node to display
a window of collected data for that node. The actual data
displayed will vary depending on the type of node (sender,
receiver, or router) and in some cases on the current state
of the node (placed in the tree or not traced). Senders and
receivers always display the data from the most recently re-
ceived RTCP packet. This information is broken into three
basic display sections, which roughly correspond to the sec-
tions of the RTCP packet itself. Ifmtracedata is available
(the node has been traced through at least once), a fourth
section withmtracedata is also displayed. Figure 2 shows
a sample statistics window.

� The first section of the packet is the report header. This
contains the source's host name, IP address and port,
and a timestamp of its receipt at the local host.

� The second section in the RTCP report is thesource
description. This includes various textual information
about the packet sender. The most commonly trans-
ferred values are the canonical name, email address,
the person's name, and the tool used.

� The third section in the RTCP report is thereport
block. There may be a variable number of report
blocks from 0 to 32. Each report block corresponds
to a single received data stream. If there is a single
source, there will only be one report block. These re-
port blocks may appear in any order the transmitting
tool chooses. A report block will not be sent at all if
all the sources in the session have ceased transmitting,
or if the receiver has lost all connectivity (either due
to a total failure or heavy congestion) and believes the
sources have stopped transmitting.

The most important data in the report block is the frac-
tion of packets lost. This value is an an eight bit number
representing the fraction of RTP data packets received out
of 256 since the last report was sent. This fraction is calcu-
lated as the number of packets lost divided by the number of
packets expected as determined by the RTP sequence num-
bers.

If an mtracehas been successfully executed for the node
that statistics are being viewed on, these statistics are also
displayed. Statistics include the timestamp that themtrace
was started and completed, the receiver that was being
traced, and whether the trace was successful.

3.3.2. Pruning and Expanding Nodes
Routers within the tree can be pruned or expanded to create
a custom tree view. This is useful if a user is only inter-
ested in the traffic within a small subset of the multicast
tree, possibly for debugging purposes. After a router has
been pruned from the window, the router above will dis-
play a small green bar along its base, visually indicating that
there are routers and receivers below which are not visible.
On routers where there are pruned nodes below, their menu
option for ”Prune” is replaced by ”Expand”, allowing those
downstream routers and participants to be re-displayed.

3.3.3. Changing Senders
MHealth is only capable of representing a multicast tree for
a single source at a time. If more than one source is detected
in a multicast session (which is obviously the case in many-
to-many multicast sessions such as video conferencing), the
senders are placed from left to right across the top of the
screen. MHealth is not designed to handle multiple sources
because each sender will have its own unique multicast tree
to the group's receivers. Since MHealth can only display
a single multicast tree at a time, it chooses the first source
heard as the tree root. For each additional source displayed
to the right of the root, their menu will display an option to
”Make Root”. When this option is selected, the current root
and the selected source will swap positions, and the current
tree will be discarded. Every receiver will be returned to
their position at the bottom of the window, andmtraceswill
begin anew to place them into the new tree, rooted at the
new source.

3.3.4. User Mtrace Control
The “Mtrace Next” option can be used on any receiver in
the multicast group. This option alters the normalmtrace
pattern. Once a group of receivers is identified, MHealth
mtracesthem one by one, in the order they were first de-
tected. When the last group receiver is traced, the process
begins again at the beginning of the receiver list. At any
time, if the “Mtrace Next” option is selected for a receiver
(whether it has been placed in the tree or not), it will become
the next node to be traced. The text “Mtrace: SCHED-
ULED” will be placed inside the node to indicate the action

8



Figure 2. Receiver statistics from RTCP and mtracedata.

has been handled. When the currently executing receiver
trace has completed the scheduled node will be traced. The
trace order will then continue back to the node that would
have been scheduled prior to the user intervention. This or-
der is used to preserve uniform handling of new receivers.
This is important both for presenting an accurate represen-
tation of the tree but also for accurate collection of statistics.
Only one node may be scheduled in this manner at a time. If
anothermtraceis scheduled before the prior scheduled one
has started, the prior scheduledmtracewill be cancelled,
and the text ”Mtrace: CANCELLED” will be displayed in
the receiver node.

3.4. MHealth Behavior and Observational Analysis
MHealth provides a fairly quick view of small and

medium-sized trees. Over the two week period that we
logged data with MHealth, receivers were traced in an av-
erage of 41 seconds, and 19% of the total trace attempts
failed completely. These failed attempts may be due to
older routers which do not implementmtracefunctionality
or congested routers that did not respond within the timeout
period.

Viewing the MHealth tree can give a good intuitive feel
for the quality of an MBone session, but due to the incre-
mental nature of our data gathering process, the tree never
represents an exact snapshot in time. Visually, the RTCP

data updates at a much faster rate than themtraces. As a
result, the loss colorations along a path in the tree seldom
correspond correctly to the loss shown at a given receiver. In
addition, the router loss statistics are only consistent along
the path of the most recent successfulmtrace. Because
the routers common to the most receivers are all located
in the upper portions of the tree, these routers have their
mtracedata updated more frequently. The further down the
branches of the tree, and the further away from the source,
the older the loss statistics will be. As a result, the granular-
ity of the router data is finer closer to the source and coarser
closer to the leaves.

As long as the user is aware that variations exist in
the frequency of the updates from the two data sources,
MHealth is fairly intuitive. If the graphical representation
of the topology, along with near-real-time statistics offers
insight to network managers, the tool will be of value. The
combination of RTCP loss data with the tree topology is
especially useful in a number of situations. This provides
a user with the ability to scan the statistics for all group
members and identify any topological influences. A quick
inspection for a group of receivers with high loss will tell
a user whether all of the loss is caused by the same link.
This type of information is difficult to ascertain from any
single tool in use today. However, an attempt to interpret

9



an MHealth tree as an instantaneous representation of the
router and flow status throughout the multicast tree would
be useless and confusing. While fully real-time updates
would be preferred, under the limitations of multicast net-
works the data granularity achieved may be the best possible
without causing substantial network overhead.

4. Evaluation and Issues
The largest issues with MHealth are its scalability and

the granularity of its data collection and overhead. Each of
these issues is now addressed.

4.1. Scalability and Granularity of Data Collection
MHealth has a number of critical scalability issues. The

most important of these are associated with the collection
tools themselves. Both RTCP andmtracefall short of pro-
viding the actual data needed.

RTCP packets are sent at a reduced rate as the number of
multicast participants increase. This prevents overwhelm-
ing a large multicast session with control data. Because the
packet loss information included in an RTCP packet covers
all data received since the last RTCP packet sent, no period
of time will be missed. However, the granularity of the data
collected will be reduced. As a result, although MHealth
will receive RTCP packets at roughly the same rate regard-
less of group size, the frequency of the updates for each
individual receiver decrease as the group size increases.

Another major RTCP concern is whether the packets will
actually be received at all. There are a number of potential
reasons why this issue needs to be considered. First, RTCP
packets are over UDP, and therefore unreliable. These pack-
ets can potentially be lost and will likely be lost in highly
congested networks. Second, RTP tools operating behind a
firewall may not be able to get any of their control packets
to other group members. Finally, there are some streaming
media tools that do not implement RTP. In fact, some tools
which do implement RTP do not implement RTCP or fail
to implement it properly. The net result is that sometimes
the worst performing group members have the hardest time
telling the group of their performance problems.

Mtracehas similar scalability problems. Tracing a route
takes a certain length of time to complete (averaging ap-
proximately 41 seconds for the data we have logged). Since
the receiver list is sequentially traversed, the larger the list
of receivers, the more time elapses betweenmtrace at-
tempts. And again, congestion problems in the network
will cause traces to fail and no information will be provided
for group members whose network problems need to be ad-
dressed.

It is not necessarily clear what can be done to address
these scalability issues. RTCP or any application-level feed-
back needs to reduce its granularity as the session member-
ship grows. Unless some management station is configured

and capable of receiving hundreds or thousands of messages
per second, multicast feedback will not scale. Mtrace col-
lection can be enhanced by executing multiplemtracessi-
multaneously, but then there is a risk of adding too much
overhead to the routers. There may be some methods to
reduce themtraceoverhead by doing more intelligent trac-
ing. This topic is addressed more in the next section and in
future work. Despite these issues, in a connectionless one-
to-many network the methods used to collect data are some
of the best currently available.

4.2. The Overhead of IGMP Queries
The overhead of tracing a multicast session's topology

in a repeated and automated way is a potential concern. Ev-
ery successfulmtracerequires a response from every router
along the path from the receiver to the source. There are
two concerns about this type of overhead. First, there are
concerns for a single MHealth monitor running for a group.
Second, the concern is even greater for a single group that
has multiple or many MHealth monitors running.

First we look at the concerns from the point of view of a
single MHealth process. If the session participants are rea-
sonably distributed (meaning that a large number of them do
not share the same last hop router), the successive receiver
mtracesinitiated by MHealth will be distributed through-
out the topology. This means that the routers closer to the
leaves in a reasonably distributed group will not be required
to respond to repeatedmtracerequests. The larger concern,
however, is for the routers closer to the source, especially
the first hop router from the source, which must respond
to everymtrace. For these routers, the interval between
when they must respond tomtracerequests is directly pro-
portional to the time it takes to complete anmtrace. A valid
concern is that the frequency with which these routers must
respond to IGMP packets in addition to their normal uni-
cast and multicast routing duties may actually cause more
congestion.

The first thing to consider in this case is that by design,
mtraceIGMP packets may be ignored when the router is
under heavy load[3]. This should preventmtracefrom over-
loading a router in most cases. However, it would be poor
design for a network monitoring tool to rely on router ro-
bustness to prevent congestion. One possibility is to apply
an exponential backoff of the frequency ofmtraceswhen
router congestion is detected, at the expense of trace infor-
mation.

Another promising approach is to only trace from the
receiver into the known tree instead of all the way to the
source. A fullmtracewould be run back to the source pe-
riodically, but less frequently. This would allow the tree
topology and statistics to still be updated, but would reduce
the frequency of trace updates on the portions of the tree
closer to the source. This approach is discussed further in

10



the future work section.
Another perspective that must be considered is the use

of multiple copies of MHealth simultaneously on the same
MBone session. Other than requiring asetuidof root for
running themtrace tool on Unix systems, there are no
special requirements for running MHealth on any session.
Since it is the intention to release MHealth as a freeware
tool, the possibility exists that many copies of MHealth
could be run simultaneously on the same session from dif-
ferent locations without knowledge of each other. In an ex-
treme case of a small number of participants and/or a large
number of MHealth users, every router in the tree could po-
tentially need to respond tomtracerequests on an almost
constant basis. The approaches for reducingmtraceconges-
tion discussed from a stand-alone perspective above could
be applied in this situation as well. Two additional solutions
also have been considered. The first is to integrate MHealth
into a web browser. The second is to make MHealth pas-
sive and collect statistics by listening to others conducting
traces. Both of these schemes are described in the next sec-
tion.

5. Future Work

5.1. Web Integration

One of the best ways to reduce the overhead of doing an
mtracein a multicast session would be to limit the number
of people who are doingmtraces. One way to do this is to
only have a single user actually running the MHealth pro-
gram, and have that user create a display of the MHealth
data on a web site. Other interested parties would simply be
able to access the data via the web site.

An implementation of this was attempted using a Java
applet and tested during the 42nd IETF in August 1998.
When the Java applet was loaded into the web browser, the
Java applet would contact the instance of MHealth via a uni-
cast TCP socket. Due to Java applet security restrictions,
the MHealth application was required to run on the same
machine as the web server. The MHealth application would
then transfer a serialized copy of the entire tree structure
and all of its associated data to the Java applet. The ap-
plet would display the graph in an identical fashion to the
application itself. The applet maintained full interactivity,
allowing clicking on nodes for RTCP andmtracestatistics,
and the pruning and expanding of nodes. A “refresh” button
in the applet recontacted the MHealth application to receive
a new snapshot of the data.

Although the applet worked well in a controlled environ-
ment with small trees and few requests, deployment testing
proved this approach was not scalable. As the quantity of
data to be transferred and the number of requests increased,
both the MHealth application and the applets either crashed
or displayed erratic results. In addition, the variety of oper-

ating systems, browser versions, and Java versions created
a number of bugs that did not occur when the Java virtual
machine versions and implementations were carefully con-
trolled. This approach has been abandoned for the time be-
ing.

As an alternative to an active Java applet, another ap-
proach that has been considered is the generation of a GIF
or JPEG image of the MHealth tree. This image would be
placed in a web page and updated frequently. The draw-
back is that interactivity and additional information requests
would not be supported. Implementation of an image dump
is currently being investigated.

5.2. Passive Mode MHealth
One interesting solution for the problem of of multiple

MHealth sessions is to utilizepassive mtraces. The results
of mostmtracesare multicast onto a well-known multicast
address. A passivemtracedoes not send anmtrace Query,
but promiscuously listens for anmtracewhich matches the
user's query. An implementation of MHealth which uses
passivemtracescould have an active and a passive mode.
Passive mode would be the default, and an MHealth process
would listen for anymtracethat matched one of themtraces
it would need to know about. As long as neededmtraces
were being received, MHealth would stay in passive mode.
If no relevantmtraceswere heard after some (possibly ran-
dom) timeout period, MHealth would enter active mode and
begin actively sendingmtracequeries. In theory, this would
create a single “leader” MHealth process that would send
queries, and the other MHealth processes would be passive.

5.3. Total Mtrace Control and Partial Tree Tracing
An optimization of MHealth would be to integrate

the mtracefunctionality entirely into the Java application,
rather than parsing the output of the existingmtracetool.
This would greatly enhance the reliability of interpreting the
mtraceoutput and offer tighter control on the traces. Addi-
tional features such as a separate window for watching trace
activity could also be added.

Tighter trace control would also allow for partial tree
tracing. In order to reduce overhead, traces could be ini-
tiated from the receiver into a known portion of the tree,
rather than completely to the source. This would create a
less up to date tree at the nodes closer to source, but would
reduce IGMP query overhead at the source. Periodic traces
could be done all the way to the source in order to update
the nodes closer to the root.

5.4. Session Playback
One possible enhancement is the ability to play back a

logged MHealth session, either in actual time or perhaps
at some multiple of real-time. Since all of the data used
to draw the tree can be logged (the RTCP packets and the
resultingmtraces), it would be possible to watch how the

11



multicast tree changes over time. This would be done after
the session is over, almost like “time-lapse” photography.
This would be useful for loosely observing group and tree
behavior over time, and also for debugging problems after a
session had ended.

6. Conclusion
This paper first points to the advantages of multicast as

a paradigm for improving bandwidth usage, especially for
broadcast-style streaming of audio and video traffic. Multi-
cast is shown to be growing in popularity, and Internet de-
ployment efforts have been growing as well. A clear need
for tools to monitor multicast traffic, diagnosis faults, and
analyze traffic flow is identified. This need is often cited as
one of the most significant barriers to widespread multicast
adoption.

MHealth, a graphical, near real-time multicast monitor-
ing tool has been developed. MHealth allows a user to view
and collect data about the health and topology of a multi-
cast tree. Despite concerns about MHealth's scalability and
granularity of data collection, it has been shown to be a use-
ful tool for collecting, processing, and archiving topology
data.

The potential of multicast to change content distribution
in the Internet and in traditional television, radio, and print
media is enormous. The decade long effort to make multi-
cast a ubiquitous feature is culminating in widespread adop-
tion plans throughout the Internet infrastructure. MHealth
is one of the first intuitive and easy-to-use visualization
tools for group-wide multicast monitoring and debugging.
Of critical importance is MHealth's ability to integrate data
from multiple sources and provide a more comprehensive
picture of multicast data flows. MHealth is probably the
first of many tools that will be aimed at reducing the learn-
ing curve for managing multicast networks. Hopefully,
MHealth is a next step in solving the “chicken-and-egg”
problem of having the right tools before deploying multi-
cast but also needing the right tools before multicast can be
deployed.

References

[1] H. Eriksson, “The multicast backbone,”Communications of the
ACM, vol. 8, pp. 54–60, 1994.

[2] S. Casner, Frequently Asked Questions(FAQ) on the Multicast
Backbone(MBone). USC/ISI, December 1994. Available from
ftp://ftp.isi.edu/mbone/faq.txt.

[3] W. Fenner and S. Casner, “A `traceroute' facility for IP multicast,”
Tech. Rep. draft-ietf-idmr-traceroute-ipm-*.txt, Internet Engineering
Task Force (IETF), August 1998.

[4] H. Schulzrinne, S. Casner, R. Frederick, and J. V., “RTP: A transport
protocol for real-time applications,” Tech. Rep. RFC 1889, Internet
Engineering Task Force, January 1996.

[5] A. Swan and D. Bacher,rtpmon 1.0a7. University of Cal-
ifornia at Berkeley, January 1997. Available from ftp://mm-
ftp.cs.berkeley.edu/pub/rtpmon/.

[6] K. Almeroth, Multicast Group Membership Collection Tool (mlis-
ten). Georgia Institute of Technology, September 1996. Available
from http://www.cc.gatech.edu/computing/Telecomm/mbone/.

[7] J. Robinson and J. Stewart,MultiMON 2.0 – Multicast Network Mon-
itor, August 1998. Available from http: // www.merci.crc.ca/ mbone/
MultiMON/.

[8] D. Thaler,Mstat. Merit Network, Inc. and University of Michigan.
http://www.merit.edu/net-research/mbone/mstat.html.

[9] D. Thaler and A. Adams,Mrtree. Merit Network, Inc. and Uni-
versity of Michigan. http: //www.merit.edu/ net-research/ mbone/
mrtreeman.html.

[10] D. Thaler,Mview. Merit Network, Inc. and University of Michigan.
http://nic.merit.edu/�mbone/mviewdoc/Welcome.html.

[11] M. Handley, “An examination of MBone performance,” Tech. Rep.
ISI/RR-97-450, Information Sciences Institute (ISI), University of
Southern California (USC), January 1997.

[12] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in
the MBone multicast network,” inIEEE Global Internet Conference,
(London, ENGLAND), November 1996.

[13] K. Almeroth and M. Ammar, “Multicast group behavior in the Inter-
net's multicast backbone (MBone),”IEEE Communications, vol. 35,
pp. 224–229, June 1997.

[14] D. Clark and D. Tennenhouse, “Architectural considerations for a
new generation of protocols,”ACM Sigcomm, pp. 200–208, Septem-
ber 1990.

[15] J. Nagle, “Congestion control in IP/TCP internetworks,” Tech. Rep.
RFC 896, Internet Engineering Task Force (IETF), January 1984.

[16] S. Deering, “Host extensions for ip multicasting,” Tech. Rep. RFC
1112, Internet Engineering Task Force (IETF), August 1989.

[17] W. Fenner, “Internet group management protocol, version 2,” Tech.
Rep. RFC 2236, Internet Engineering Task Force (IETF), November
1997.

[18] B. Cain, S. Deering, and A. Thyagarajan, “Internet group manage-
ment protocol, version 3,” Tech. Rep. draft-ietf-idmr-igmp-v3-*.txt,
Internet Engineering Task Force (IETF), February 1999.

12


