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Abstract

We study rate controlof aggregated TCP connections, i.e., mul-
tiple TCP connections treated as a singleaggregate for pur-
poses of rate control, via traffic conditioning mechanisms such
as traffic policing and shaping. This is a likely scenario given
the current trends in policy-based service differentiation on the
Internet (e.g., Differentiated Services) and content aggregation
on the Web (e.g., virtual hosting). Traffic aggregation is in-
creasingly necessary for cost-effective, scalable provisioning
and management of network and server resources.

We proposeand evaluate a set of mechanisms for fair sharing
of an aggregate’s allocated bandwidth between connections
comprising the aggregate, for traffic conditioning via policing
with marking and shaping. We propose logical token buckets
(common token bucket with logical partitions) thataccount for
the round-trip times of individual connections to provide fair
bandwidth sharing while achieving high aggregate throughput
and bandwidth utilization. We propose modifications to TCP’s
congestion window increase during congestion avoidance to
achieve fairness between short and long-lived connections, and
introduce the notion of aggregate fairness. We demonstrate that
the proposed mechanisms provide a high degree of fairness and
bandwidth utilization while limiting an aggregate’s bandwidth
usage to the desired rate. We also describe the key protocol
stack extensions for our AIX-based prototype implementation
to enable efficient rate control of TCP connection aggregates.

1 Introduction

The Web and Internet together constitute a critical informa-
tion, entertainment, and commerce infrastructure that is rapidly
evolving from a best-effort service model to one in whichser-

vice di�erentiation can be provided for users, services, and
applications. This service differentiation is in the form of
preferential treatment (using priorities, resource reservation,
etc.) of one type of user/application traffic over another at the
servers, proxies, and network elements that comprise the end-
to-end infrastructure. A number of IETF working groups, e.g.,
Differentiated and Integrated Services, are in the process of
developing standards for new technologies that realize and/or
support service differentiation on the Internet and Web. Many
ISPs, network carriers, and Web sites are enabling some form
of service differentiation and this emphasis is likely to become
even stronger as the Internet continues its exponential growth.

One of the primary motivations for service differentiation
on the Internet is the control it provides over the manage-
ment of server and network resources. This control allows
service providers and carriers to offer a range of customer ex-
periences via new business models and business-to-customer
and business-to-business relationships. These relationships are
based on resource provisioning for different types of traffic in
order to realize a wide variety of service guarantees (such as
loss and/or delay bounds, network bandwidth allocation, etc.).
The complexity and cost of providing service differentiation is
determined to a large extent by the traffic class granularity at
which service differentiation is applied. For example, while
each end-to-end application/network flow (e.g., all traffic on a
given TCP connection) is a good candidate for service differen-
tiation, per-flow resource provisioning and traffic conditioning
results in a substantial increase in the complexity and overhead.
Besides limiting scalability, it may also negatively impact the
service provided to traditional best-effort traffic due to the high
overhead and/or under-utilized resources.

Traffic aggregation, i.e., aggregation of individual network
flows, is increasingly becoming necessary for cost-effective
and scalable management of network resources such as band-
width and buffers. This emphasis is reflected in a number of
standards being defined by the IETF, e.g., Differentiated Ser-
vices (DS) [1, 2], in which network devices at the edge of



the network aggregate traffic flows onto provisioned “pipes”
that traverse a simple and streamlined network core. The edge
devices, which include servers and proxies, are mainly respon-
sible for complex quality-of-service (QoS) functions, while
the network core only needs to manage a small number of
provisioned pipes using simple per-hop QoS and forwarding
mechanisms (per-hop behaviors [1]). In this model, network-
wide policies and/or service level specifications (SLS) ensure
that several per-hop behaviors can be meaningfully combined
to realize end-to-end service guarantees.

Technology trends in the Web server/proxy design space are
also moving towards traffic aggregation to reduce site manage-
ment costs and improve resource utilization. A clear exam-
ple is co-location of distinct Web sites onto a single powerful
server platform, e.g., virtual hosting in the popular Apache
web server [3]. Virtual hosting allows multiple web sites to
share server resources transparent to the clients, and is actively
employed for many Web sites today. Similarly, there is now a
trend towards large-scale outsourcing of general Internet appli-
cations to “Enterprise Service Providers”,motivated once again
by substantial cost savings. In these environments, service
differentiation becomes essential to partition server resources
(e.g., available network bandwidth) between the aggregated
traffic belonging to different web sites or applications.

Note that hosts (e.g., Web servers and proxies) are edge de-
vices that already provide some key components required for
service differentiation: (i) they maintain per-flow state (e.g.,
sockets and protocol control blocks), (ii) they are closer to
the applications, facilitating efficient control over inbound and
outboundtraffic, and (iii) they can classify and aggregate traffic
based on application or user-level information that is not avail-
able in the network. Widespread deployment of the Web (and
hence HTTP) has made TCP the dominant transport protocol
for the Internet. Thus, we only consider TCP traffic, given that
it also provides a special challenge for service differentiation.

In this paper, we focus on design considerations for ser-
vice differentiation of aggregated TCP connections at Internet
servers and proxies. In particular, we study rate control of
aggregated TCP connections via traffic conditioning mecha-
nisms such as traffic policing and shaping, a likely scenario
given the current trends in policy-based service differentiation
on the Web and Internet. Realizing aggregated rate control
on heavily-loaded servers and proxies requires: (i) scalable
policies and mechanisms for traffic control, (ii) efficient rate
control for the aggregate, and (iii) fair allocation of available
bandwidth to each connection.

The main contributions of this paper are in proposing and
evaluating different approaches for rate control of aggregated
TCP connections. We compare per connection rate control and
aggregated rate control using a common token bucket to con-
trast the tradeoffs between fairness and achievable throughput.
To balance these tradeoffs, we propose an approach that uses

a common token bucket withlogical partitions. The logical
partitioning enables a high degree of fairness, while the use
of a common bucket allows dynamic sharing of unused rate,
thereby, achieving a high aggregate throughput. Given round-
trip time estimates, the fairness mechanisms proposed apply
to any bottleneck link traversed by a set of aggregated TCP
connections. We also propose modifications to the TCP con-
gestion window increase algorithm during congestion avoid-
ance to achieve fairness amongst a mixture of connections with
long and short lifetimes. We define the concept of aggregate
fairness to compute the exact modification to the congestion
window. Finally, we present the protocol stack extensions in
our prototype implementation on AIX 4.2.1, and discuss the
implementation overheads for timer-based traffic shaping.

The rest of this paper is organized as follows. The following
section outlines the problem specification and presents appli-
cation scenarios for the problem of aggregated rate control of
TCP traffic. Section 3 provides an overview of possible ap-
proaches for rate control of individual TCP connections. Sec-
tion 4 considers rate control of aggregated TCP connections,
proposing and evaluating solutions to enable fairness between
connections while performing efficient rate control. Possible
modifications to TCP congestion window algorithms, and their
effectiveness in improving fairness, are explored in Section 5.
Key protocol stack extensions developed for our prototype im-
plementation are presented in Section 6. Section 7 discusses
related work while Section 8 concludes the paper.

2 Problem Speci�cation

Consider the scenario depicted in Figure 1(a). A collection
of servers (a server farm) for content hosting are connected
to the Internet through a network provider. The connectivity
between the servers and the network provider is in the form of
a dedicated leased line (e.g., T1 or T3), or a virtual leased line
with the server site contracting with the network provider for
a certain amount of link bandwidth. We refer to the available
bandwidth between the server farm and the network provider
as the access bandwidth. Clients with varying levels of con-
nectivity (in terms of bandwidth and delay) connect to one or
more servers to download content across the Internet. The
content serviced by the servers is transported across the access
link either via an access device concentrator or an intervening
proxy. Referring to Figure 1, the content server (S) generates
traffic in response to requests from one or more clients (C).

We assume that each server in the server farm is assigned a
certain fraction of the available access bandwidth (e.g., a vir-
tual leased line), and that the server has sufficient processing
power to fully utilize the availableaccess bandwidth. This is
highly likely with modern high-performance servers even for
access speeds of 100 Mb/s or more [4], especially when each



S: content server
P: network provider
C: content client

access link (dedicated or leased)

S P

C

C

C

network (Internet)

n0: content server
n1: router
nb: background traffic source

500 Kbps
10 ms

n0-n2 RTT: 50 ms
n0-n3 RTT: 300 ms
n0-n4 RTT: 300 ms
n0-n5 RTT: 600 ms

n2, n3, n4, n5: content clients

1.5 Mbps

n5

n4

n3

n2

n1n0

nb

(a) Problem scenario (b) Simulation topology

Figure 1: (a): Problem scenario depicting a content server S that connects to the network (and clients C)
via a network access provider P across a dedicated or leased access link. (b): simulation topology.

server is allocated only a fraction of the access link bandwidth
(e.g., T3 virtual circuits). For example, the network provider
may establish an SLS with the content server, restricting the
server to a specified maximum bandwidth usage on the access
link, and/or charge the server for any excess traffic. This allows
the network provider to limit the resources consumed by the
server’s traffic before it is injected into the external network.
To comply with the SLS, the server must perform appropri-
atetra�c conditioning (i.e., marking, policing, dropping,
shaping) on thetotal transmitted traffic.

Traffic conditioning specification is a fundamental compo-
nent of an SLS or policy, and specifies (i) a traffic profile and
(ii) actions such as policing, marking, dropping, or shaping.
The traffic profile describes the temporal properties of a con-
nection’s traffic using a leaky bucket based specification (e.g.,
peak rate, average rate, and burst size). The traffic profile
is used to determine whether a particular packet is in-profile
(compliant) or out-of-profile (non compliant). We consider
two common traffic conditioning actions: policing with mark-
ing and shaping; our results also apply to traffic conditioning
functions such as policing with dropping. With policing and
marking, in-profile packets are sent marked and out-of-profile
are sent on a best-effort basis. With shaping, out-of-profile
packets are delayed (i.e., buffered) until they become compli-
ant with the traffic profile.

2.1 TCP Connection Aggregates and Rate
Control

Since the access link provides the primary connectivity to the
external network (e.g., the Internet), the access bandwidth (but
not necessarily the access link) available to a content server is
often a precious (and bottleneck) resource that must be allo-
cated and managed properly. To manage the access bandwidth
and distinguishbetween individualconnections, the server may
partition theaccess bandwidth via one or more policies (or
SLSes) configured by a system administrator. These policies

define one or more service classes (e.g., a DS codepoint [1],
peak or average transmission rates) and specify appropriate
traffic conditioning functions for each class. Such policies al-
low the server to differentiate between connections based on a
number of criterion, e.g., the server content accessed, the server
applications or services invoked, and their connectivity to the
network. The server assigns traffic to a particular service class
and performs the specified traffic conditioning function. The
rate limits for a given policy may be specified by some global
network-wide policy database, or derived independently from
the SLS between the server and the network provider.

Table 1 lists some example policies specifying traffic classes
and traffic conditioning functions. As illustrated in Table 1,
each policy controls traffic on multiple traffic flows (such as
TCP connections or UDP sessions) with each service class.
We refer to the set of flows controlled by a policy as a flow
aggregate. In the rest of the paper we focus on policy-based
rate control of TCP connection aggregates. One of our goals is
to explore thedesign tradeoffs in ratecontrol of TCP connection
aggregates, and its pros and cons relative to rate control of
individual TCP connections.

2.2 Scalable and Fair Sharing of Aggregate
Bandwidth

With each policy exercising rate control on a large number of
connections simultaneously, the aggregation mechanisms must
scale with the number of connections. In practice this requires
reduction or amortization of traffic conditioning overheads.
Since short-lived TCP connections are common, the aggrega-
tion mechanisms must also efficiently support a dynamically
changing set of connections controlled by a single policy.

The aggregation mechanisms must ensure fair sharing of the
assigned bandwidth (referred to as available access bandwidth
for the rest of the paper) between the individual connections
comprising an aggregate. In the absence of fairness an ag-
gressive TCP client can consume an unfairly large proportion



Filter Tra�c Pro�le Tra�c Conditioning

<128.34.16.4, *, *, *> (100 Kbps, 100 Kbps, 10 KB) police and mark
<128.34.16.8, 80, *, *> (1 Mbps, 2 Mbps, 20 KB) shape

<128.34.16.4, *, 141.213.8.108, *> (100 Kbps, 300 Kbps, 30 KB) shape

Table 1: Example policies requiring rate control of tra�c aggregates.

of the assigned bandwidth at the expense of well-behaved TCP
clients. Even though TCP congestion control mechanisms
are designed for global fairness, TCP connections can be ag-
gressive for a variety of reasons, the primary being smaller
round-trip times [5] and/or a high rate of connection requests
per second originating from a given client.

De�nition of Fair Share: For an aggregate compris-
ing n TCP connections, we consider fair share to be an equal
allocation of (leaky bucket) tokens among individual connec-
tions. More precisely, the sharing of tokens ismax-min or
bottleneck fair, i.e., if any connection uses an amount less than
its fair (i.e., equal) share, the unused amount is shared equally
among the remaining connections. Thus, each connection is
granted a share ofsi = min(S; ŝi); whereS is the fair (i.e.,
equal) share and̂si is the share requested.

To measure the fairness in the throughput achieved byeach
TCP connection, a commonly used metric is the ‘fairness”

index, which is given by(�Ri)
2

n�R2

i
;

whereRi is the observed

throughput of theith TCP connection on the shared link [6].
This metric measures the deviation from an equal share; a
maximum fairness index of 1 indicates an equal share. Since
a TCP connection may not use its equal share due to some
other bottleneck link in its path, we modify the fairness index
to handle max-min fairness. If the max-min fair share issi,

the fairness index is given by,(�Ri=si)2

n�(Ri=si)2
.

By virtue of fair bandwidth allocation at the source, at each
bottle link traversed by an aggregate’s connections, bandwidth
allocation to individual connections is fair, irrespective of the
round-trip times of the individual connections. The aggrega-
tion mechanisms must also ensure high access bandwidth uti-
lization while maintaining a high degree of fairness, especially
for a mix of long-lived and short-lived connections.

We explore several approaches to provide fair bandwidth
sharing for TCP connection aggregates while applying rate
control on the total access bandwidth consumed by the aggre-
gate. These approaches, which exploit knowledge of round-
trip times of all the connections constituting the aggregate, are
readily realizable at the server since it is the endpoint foreach
connection constituting an aggregate.

3 TCP and Rate Control

In this section, we first provide an operational overview of data
transfer on individual TCP connections and the factors that
affect fairness between connections. We then describe how
traffic conditioning functions such as policing and shaping can
be used to control the rate of individual TCP connections.

3.1 Regular TCP

TCP traffic is governed by window-based flow control clocked
primarily by the receipt of acknowledgments (ACKs) from the
receiver. In regular TCP, the sender sends a minimum of the
congestion window (cwnd) and the receiver’s advertised win-
dow. During the slow-start phase thecwnd grows exponen-
tially from 1 segment, doubling every round-trip time, until a
threshold,ssthresh, is reached. In the congestion avoidance
phase the window grows linearly, increasing by 1 segment after
every round-trip time. TCP reacts to congestion by dynami-
cally adjusting the window size. When congestion is detected
by inferring a packet loss (e.g., on receiving multiple duplicate
ACKs), the congestion window is halved, in what is called the
multiplicative decrease; a loss inferred due to a retransmission
timeout results in slow-start.

During periods of non-congestion the window size increases
linearly. However, this rate increase is not uniform for TCP
connections with different round-trip times (rtt). As previ-
ously shown [6, 5], when two TCP connections share a con-
gested link, the shortrtt connection ramps up much faster
than the longrtt connection. The bias against longrtt con-
nections is of the order ofrtt� where� < 2 [5]. Various
schemes like the Constant Rate scheme [6] or the Increase-by-
K scheme [7] attempt to reduce this inherent unfairness among
TCP connections. We revisit these schemes in Sections 4 and
5 in the context of rate control of TCP connection aggregates.

The rate of a TCP connection can be controlled either by
policing with marking or by shaping. We describe each of
these below in the context of aggregate rate control.

3.2 Policing and Marking

Policing of TCP connections is typically accomplished via
a leaky-bucket based token allocation scheme. Each connec-



tion’s traffic specification is a 4-tuple< bi; ri; rp; Lm >. The
depth of the token bucketbi is the burst size, i.e., the maximum
number of back-to-back packets that can be transmitted at the
peak rate. The average rateri, is the rate at which tokens fill
the token bucket. The traffic specification also defines a peak
raterp, such that the minimum duration between successive
packet transmissions is1=rp. Lm is the maximum size of a
packet. When a connection needs to send a packet, the token
bucket is checked for available tokens; if a token exists the
packet is sent as marked (compliant or in-profile), otherwise it
is sent as unmarked. The marking is done using IP TOS bits
or a suitable differentiated services (DS) codepoint [1].

We assume that at a backbone router, in the path between
the TCP source and sink, marked packets are given higher pri-
ority or have a lower loss probability compared to unmarked
packets. The enhanced random early detection (ERED) [8] is
one such scheme that assumes a single first-in-first-out queue
at the router with different discard probabilities for marked and
unmarked packets. As in the original RED scheme [9], packets
are dropped randomly when the queue length exceeds a given
threshold. Other schemes like FRED, buffer-based provision-
ing [10], etc., have been proposed for fairness. However, such
schemes are more useful at access routers that perform flow
classification and policing, and not at backbone routers which
only consider packet marking.

Figure 2 shows congestion window growth as a function
of time for a typical TCP connection. While the number of
marked packets sent is limited by the target rate, the unmarked
packets are controlled by TCP’s window. However, loss of an
unmarked packet halves the congestion window, thus affecting
the number of marked packets transmitted. For a given rateri
and round trip timertti, the compliant window size for marked
packets (also called rate window) is limited tori � rtti.

3.3 Shaping

With shaping, transmission of a non-compliant packet is de-
layed until it becomes compliant with the traffic specification.
TCP trafficcan beshaped by threedifferent approaches [11]: (i)
window-based, which limits the growth of TCP’s congestion
window, (ii) timer-based, which uses a timer-based trigger to
send the delayed non-complaint packets, and (iii)ack-based
pacing, which paces acknowledgments to indirectly limit the
growth of the congestion window to the desire value. We
briefly compare and contrast each of these approaches.

Window-based: This approach limits the increase in the
TCP congestion window (cwnd) to an upper bound computed
using the desired average rate. For a TCP connection with
round-trip time estimatertti and desired average rateri, the
congestion window size is limited by the rate window tori �
rtti. This limits the average rate tori, provided the round-trip
time estimates are accurate. A key limitationof this approach is

that it does not provide any control over the peak transmission
rate and burstiness, and does not work for non-TCP traffic (e.g.,
UDP sessions). While it works well for controlling the average
rate of individual TCP connections, it cannot ensure fairness
when applied to aggregate rate control. We do not consider
window-based rate control in the remainder of the paper.

Timer-based: In this approach non-compliant packets are
delayed until they are compliant as per the traffic profile. A
system timer initiates packet transmission once a packet is
compliant, and controls both the average and peak rates for
TCP as well as UDP traffic. For this reason we consider timer-
based shaping in the rest of this paper. Fine-grained timers,
however, incur an excessive overhead of timer interrupts and
related processing. As we discuss later in Section 6, aggregate
rate shaping can be realized using coarse grain shaping timers
by exploiting triggers other than timer interrupts.

External ACK pacing: In this approach,ACKs arriving
at a source are paced to regulate the sending behavior of the
source. ACK regulation is done external to the source, e.g., at
a front-end switch [12]. We do not consider ack-based pacing
given our focus on source-based rate control mechanisms.

Rate based pacing of individual TCP connections has been
studied in other contexts (e.g., TCP over ATM networks [12]).
However, traffic conditioning specifications are defined for be-
havior aggregates and not individual connections. In directly
applying traffic conditioning schemes designed for individual
connections, various issues arise, namely, (i) fairness, (ii) band-
width utilization, and (iii) scalability due to implementation
overheads. We now consider approaches for aggregate traffic
conditioning of TCP connections that address these issues.

4 Rate Control of TCP Connec-

tion Aggregates

As discussed earlier, current trends indicate that in environ-
ments such as virtual hosting, traffic conditioning specifica-
tions will be defined over aggregates of individual connections
or micro-flows. Such aggregates comprise a group of connec-
tions that match a given filter, e.g., a particular source or desti-
nation address, or a source or destination port. For example, in
a web hosting environment, a filter of the form< a.b.c.d,
80, ANY ADDR, ANY PORT > would aggregate all con-
nections originating at port 80 of the sourcea:b:c:d. We as-
sume that individual connections are classified into aggregates
and traffic conditioning done at the traffic source or theaccess
router. This is in accordance with the differentiated-services
proposal which moves complex rate control mechanisms to the
network edges. This is especially useful for TCP connections
as end-to-end information about round-trip delays and loss rate
is available more accurately at the source.
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Figure 2: (a) Behavior of TCP with rate-based policing and marking. (b) Leaky bucket parameters

Similar to the per connection traffic specification, a
leaky bucket-based specification consisting of the tuple<
B; rm; rp; Lm > is provided for the aggregate. The token
filling rate, rm, represents the average throughput of the ag-
gregate in bytes/second. The token bucket depth,B, limits the
maximum burst size of the aggregate. The peak rate,rp, limits
the minimum inter-packet spacing to be1=rp secs, andLm is
the maximum size of a packet that can be transmitted. Given
the aggregate’s traffic specification, the question we address
is: how should the individual TCP connections be rate con-
trolled to comply with the specification? One straight-forward
approach is to partition the token bucket equally amongst the
connections and perform independent per connection rate con-
trol. A second approach is to share a common token bucket
among individual connections. We also propose a third ap-
proach, which is to have a common token bucket but assign a
logical partition foreach connection.

To compare these approaches we consider:

(i) how are the tokens of the aggregate shared among indi-
vidual TCP connections such that each connection gets a
“fair” share of the aggregate rate?

(ii) how is the link utilization affected by interactions with
TCP’s window based flow control?

(iii) what is the implementation overhead of rate control?

Before discussing the design and evaluation of the three ap-
proaches, we describe the simulator used for experiments and
define how we measure fairness.

4.1 Evaluation Methodology

We modified ns version 2.1b4 [13] to support rate control for
TCP connection aggregates. A newqosmgr agent maintains
traffic aggregates and performs traffic conditionining functions.
Each aggregate is defined by a policy comprising a filter, the

traffic conditioning specification, and a list of TCP connec-
tions and their states. The filter is defined by the tuple<
src addr, dst addr, src port, dst port > . A
value ofANY ADDR for the address fields, orANY PORT for
the port fields, matches all values. The traffic envelope spec-
ifications consist of the average transfer rate, peak rate, burst
size, and the maximum packet size for the aggregate.

The qosmgr agent is configured to perform a combina-
tion of policing with marking, and shaping on the connections
within an aggregate. With only policing and marking enabled,
compliant packets are marked by setting the priority field in
the packet header, while non-compliant and best-effort packets
are sent unmarked. The marked packets can be configured to
suffer lower loss rates compared to unmarked packets. We add
a new queue discipline of ERED [8] (an extension of RED)
that assigns a lower drop probability for a marked packet when
queue length is greater than the threshold. By default a marked
packet is has a 1.5 times lower drop probability.

When shaping is enabled, we use a timer-based mecha-
nism which associates a shaping timer with each aggregate.
Packets are transmitted only if the aggregate is compliant, oth-
erwise transmission is delayed until the next time the shaping
timer expires. The check for compliance is made when a
received ACK triggers packet transmission or when the ap-
plication sends data, i.e, whenever TCP’s output routine is
invoked. We assume a default shaping timeout of 15 ms. The
fairness policy controls which connection in an aggregate
is allowed to transmit next and the number of packets it can
transmit. We extended NewRenoTCP to invoke theqosmgr’s
traffic conditioning functions before packet transmission.

We use the simple network topology shown in Figure 1(b)
for all the experiments. For the equal bandwidth case the link
bandwidth between the client and network provider’s router
is assumed to 500kbps. For the unequal bandwidth case, the
bandwidths are set to 1000 kbps, 500 kpbs, and 100 kbps. The
rtt values are set to 50 ms, 300 ms, and 600 ms. The topology
is chosen such that the access link between the server and the
network provider (represented by the sole router) is the bottle-



neck link. Client connectivity to the network is represented by
direct links to the network provider with appropriatebandwidth
and delay properties. We use a synthetic workload to emulate
short and long HTTP and FTP-style transfers from the server
to the clients. The evaluation focuses on the effects of the pro-
posed fairness policies and TCP modifications. The primary
metrics used are the aggregate and per-connection end-to-end
throughput and the fairness in bandwidth allocation.

4.2 Mechanisms for Rate Control

For rate control of the aggregate we consider policing with
marking and rate shaping as the two traffic conditioning mech-
anisms. We assume that the intermediate routers can distin-
guish between marked (i.e., compliant) and unmarked packets
and provide better service (lower loss or delay) to the marked
packets. As discussed in Section 3, we use timer-based mech-
anisms for shaping; Section 6 discusses timer overheads and
design implications. For both policingand shaping we evaluate
the tradeoffs among the three different approaches to sharing
the aggregate token bucket among individual connections.

As a reference case, we first present the throughput of in-
dividual TCP connections when no rate control is performed.
The throughput is presented as a ratio of the total number of
bytes sent so far since the start of transmission. While this does
not capture instantaneous fluctuations in the observed through-
put, it is useful when comparing the average throughput of
long-running connections. Figure 3(a,b) shows the observed
throughput foreach connection for equal and varying linkband-
widths. As discussed in Section 3, TCP is inherently unfair to
connections with largertt values. With traffic conditioning
rules, we evaluate in Section 5, if and when modifications to
TCP’s congestion window are required to achieve fairness.

4.2.1 Partitioned Token Bucket

In this scheme the aggregate token bucket is partitioned among
then individual TCP connections. Since no sharing is possi-
ble, each connection’s token filling rateri is an equal share of
the aggregate raterm, that isri = rm=n. We first consider
an equal division of the aggregate token bucket depth among
each connection, i.e.,bi = B=n. The partitioning is equiva-
lent to independent rate control of each TCP connection. The
throughput with rate shaping of individual connections,each
with a differentrtt value, for the topology with equal band-
width links is shown in Figure 4(a). For this topology, the figure
shows that each connection is shaped to the assigned rate, the
fairness index in steady state being 0.99 and the achieved ag-
gregate throughput being 99.5% of the aggregate rate. Note
that TCP’s rate of congestion window increase is clocked by
thertt duration. With shaping, the congestion window size
is limited to the size of the rate windowri � rtti. For connec-
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tions to not lose tokens while waiting for acknowledgments,
the token bucket depth should be at least equal to the rate win-
dow, i.e.,bi � rtti � ri. It follows that the aggregate token
bucket depthB � �rtti � ri, or B � rttav � rm, where
rttav is the average roundtrip time for connections within the
aggregate. To avoid losing tokens, we configure each connec-
tion with a bucket depth proportionate to it’srtt value; the
fairness mechanisms work for any configured bucket depth.
Figure 4(b) shows the throughput for individual rate-controlled
connections with proportionate share of the token bucket; the
fairness index in this case is 0.996.

For the topology with equal bandwidths and proportionate
share, individual rate shaping with a partitioned token bucket
achieves a fair share among individual connections. However,
there are two drawbacks with individual rate shaping. First,
fine-grain per-connection shaping timers result in high system
overheads; a coarse-grained timer per aggregate or per server
will lower overheads significantly. As discussed later, coarse-
grained timers are feasible only if additional triggers are used.
Such triggers are available only when multiple connections are
shaped as an aggregate. Second, the aggregate throughput is
low when different connections span different link bandwidths.
When a connection cannot utilize it’s assigned equal share,
the extra rate is wasted, decreasing the aggregate throughput.
Figure 5 shows that with different bandwidth links the achieved
aggregate throughput is reduced to 87% of the aggregate rate.
With aggregate token sharing, this unused throughput can be
dynamically shared across the remaining connections. Note
that with independent rate control it is not possible to determine
a priori the best rate to assign to a connection.

Figures 6(a,b) compares the compliant and non-compliant
throughput with policing and marking of individual connec-
tions. The total throughput (compliant and non-compliant) is
much higher than the aggregate rate, but the aggregate com-
pliant throughput is lower since the loss of unmarked packets
reduces the congestion window below the rate window.
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Figure 3: Regular TCP without rate control: Throughput of TCP connections with di�erent RTTs sharing
the same bottleneck link; link bandwidths based on topology shown in Figure 1(b).
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Figure 4: Individual rate control with shaping: Throughput of TCP connections with di�erent RTTs
sharing the same bottleneck link with each connection shaped separately; the link bandwidths are equal.

4.2.2 Common Token Bucket

Another approach for aggregated rate control is to use a com-
mon token bucket. By sharing the token bucket among con-
nections and using a single timer for shaping, we can alleviate
the drawbacks of individual rate control. We first consider a
naive approach to rate shaping with a common bucket. In this
case, a list of connections is maintained per aggregate; when
the shaping timer expires, a sequential scan over the list is done
for initiating a data transfer. For TCP connections with differ-
entrtt values, an aggressive connection, which has a small
rtt and always has data to send, will consume most of the
tokens and starve the less aggressive connections. The fairness
index for such a sequential ordering is 0.43 for the through-
put values shown in Figure 7(a). A fairer approach is to use
a first-come-first-served (FCFS) scheme for assigning tokens.
In FCFS, the connections are ordered based on the time when
they first becamenon-compliant. When the shaping timer ex-
pires, the connection that becamenon-compliant the earliest

is allowed to transmit first. The fairness index with the FCFS
scheme is much higher (0.95), for the throughputvalues shown
in Figure 7(b). Instead of FCFS, another approach is to use
a least-recently-used LRU ordering for assigning tokens. On
a shaping timer trigger, the connection that was least recently
assigned a token goes first. The fairness index with the LRU
scheme scheme is similar to that with FCFS (0.95), for the
throughput values in Figure 7(c). However, the LRU scheme
penalizes short aggressive connections more than FCFS.

Comparing with rate control of individual connections, ag-
gregate shaping with a common timer seems to have poorer
fairness. However, when link bandwidths are non-uniform
the aggregate throughput is higher than that of the partitioned
schemes. This is because sharing the token bucket inherently
leads to sharing unused capacity as shown in Figure 7(d). The
throughput achieved is 99.5% of the aggregate rate.

For policing and marking of connection aggregates, we
compare the compliant and non-compliant throughput in Fig-
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Figure 6: Individual rate control with policing and marking: Throughput of TCP connections with di�erent
RTTs sharing the same bottleneck link, with each TCP connection individually policed and marked at the
source. Routers are con�gured to support ERED; link bandwidths are equal.

ures 8(a,b). With policing, the total (compliant and non-
compliant) and compliant throughput is higher than the par-
titioned scheme with individual rate control.

4.2.3 Common Token Bucket with Logical

Partitions

Our goal for aggregate rate control is to achieve the fairness
level of a partitioned scheme, while sharing the unused capac-
ity to achieve high aggregate throughput, and using a single
common shaping timer to reduce overheads. In order to do this
we use a common token bucket but define a logical partition
per connection. With this approach each logical token bucket
has an equal input rateri, whereri = rm=n and a weighted
share of the aggregate bucket sizeB, i.e., bi = wiB. As
discussed in Section 4.2.1, the value ofbi should ensure that
tokens are not lost due to TCP’s ack-based flow control. For
a value ofwi = rtti=�rtti, we can guarantee that bucket
depth is at least equal to the rate window, i.e.,bi � rtti � ri,
given that the same requirement holds for the aggregate bucket
depth, i.e.,B � rttav � rm. Thus each connection has its
own logical token bucket given by< ri; bi >. However, if a
connection cannot use its tokens at the rateri, due to a limited
link capacity on some link in the path, the unused tokens are
shared equally among the other active connections.

Consider Figure 9 that illustrates logical token buckets and
sharing of unused tokens. When a connection’s logical token
bucket is full, the extra tokens are shared equally among the
remaining non-full token buckets. The unused token sharing
scheme satisfies the constraint that at any time, the sum of
the tokens available to all connections is not more than the
aggregate bucket depth. Given this constraint we can derive
the number of unused tokens available for use at a given time

shared token allocator

token
request

request
token

request
token

request
token

overflow bucket

transmit
packet

transmit
packet

transmit
packet

transmit
packet

token arrival (average rate)

connection 1

connection 2

connection 3

connection 4

Figure 9: Token allocation to individual connections
using logical buckets within a shared token allocator.

T. If each bucket consists of̂bi tokens at timeT , the maximum
number of extra tokens that can be consumed are given byB�

�b̂i. The number of unused token available are�max(0; ri�
(T�ti)�bi), whereti is the last time the logical token bucket
i, was empty. Thus the total excess tokens available are

minfB � �b̂i;�max(0; ri � (T � ti)� bi):g

For the throughputvalues shown in Figure10(a), the fairness
index of 0.996 for a common token bucket and logical parti-
tions equals that of individual connection rate control. Also,
with varying link bandwidths the unused capacity is shared
among the remaining connections to fully utilize the assigned
aggregate rate (as shown in Figure 10(b)). We argue that shap-
ing using a common token bucket with logical partitions is able
to balance the tradeoffs of fairness and utilization, assuming
that a single shaping timer suffices for a large group of con-
nections. To ensure that a single timer scales to a large number
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Figure 7: Shaping with common bucket: Throughput of TCP connections with di�erent RTTs, with
aggregate shaping at the source; link bandwidths are equal in (a,b,c) and di�erent in (d).

of connections we need additional mechanisms to trigger com-
pliance checks and transmissions. Section 6 discusses triggers
for scalability with coarse grained timers.

For policing and marking of connection aggregates, we
compare the compliant and non-compliant throughput in Fig-
ures 11(a,b). With policing, the total (compliant and non-
compliant) and compliant throughput is higher than that with
individual rate control. The unused share of a connection
is used by other connections to send more marked packets,
thereby lowering the loss rate.

5 Adapting TCP Congestion

Window

Previously we demonstrated that a common token bucket with
logical partitions results in fair bandwidth sharing while offer-
ing high bandwidth utilization on the (bottleneck)access link.
Our results apply primarily to a mix of long-lived connections
that can ramp up to the target rate window. However, short-

lived connections may terminate before reaching the target rate
window, thereby not benefitting from the fairness policies de-
scribed earlier. We now consider approaches for fair bandwidth
sharing for short-lived connections in the congestion avoidance
phase (i.e., ramping up after experiencing packet loss).

To be fair when ramping up, TCP’s congestion window
increase must be proportional to the round-trip time of the
connection. We now derive an expression for the throughput
of connectioni, Ri, in terms of its round-trip time,rtti; the
derivation is similar to the derivation in [6] for Constant Rate
window increase. Assume that the available link capacity on
the bottleneck link where fair share is desired (for us this is the
link between the link and the network provider) isM . On this
link assume that the packet loss rate for connectioni isp. That
is, the average time between packet drops on connectioni is
1=p. With TCP fast recovery, the congestion window halves
on a packet loss and linearly increases till the next packet loss.
Between successive packet losses the window increases from
cwnd/2 to cwnd during a time duration1=p. The total bytes
sent during this time interval is the sum of the window sizes,
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Figure 8: Common token bucket with policing and marking: Throughput of TCP connections with di�erent
RTTs sharing the same bottleneck link, with aggregate policing and marking at the source. Routers
con�gured to support ERED; link bandwidths are equal.
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Figure 10: Shaping with common bucket and logical partitions: Throughput of di�erent TCP connections
with di�erent RTT values with aggregate shaping at the source; the bandwidth of individual links is equal.

from cwnd/2 to cwnd, increasing at the rate of 1 perrtti.
The average throughput for the connection is then the ratio of
the total bytes sent to the time interval and is given by

Ri =
1

2p � rtti
(cwnd+

1

p � rtti
):

The ratio of the congestion windowcwnd that triggers a
loss, and thertti is the achievable share of link throughput,

M̂ , whereM̂ = Mp
� ; for a packet arrival rate of�. Thus,

cwnd = M̂�rtti andRi =
Mp
2� +

1
2p�rtt2av

:For ageneralized

window increase algorithm wherecwnd increases byg(rtti)
instead of 1 in everyrtti, the throughput of connectioni is

Ri =
Mp

2�
+

g(rtti)

2p � rtt2i
:

From the above equation, the throughput of a connec-
tion is proportional togi=rtt

2
i . For fair bandwidth sharing

across all connections,gi should be proportional tortt2i , i.e.,

gi = a�rtt2i [6], wherea is a constant that controls the rate of
increase of the congestion window. No criterion for selecting
an appropriate value fora is proposed in [6]. One possible
interpretation ofa is provided in [7] by equating the aggres-
siveness of a Constant Rate connection with a given value of
a to that of a standard TCP connection with a certain RTT.
However, proper selection ofa depends on the network topol-
ogy and the number of peer connections [7]; as a result, it is
difficult to determinea in a distributed manner and selection of
a is typically ad hoc. Another important concern raised by [7]
is regarding the increased losses triggered by the Constant Rate
connection because the aggressive window increase results in
very bursty send patterns. The fix proposed in [7] is to bound
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Figure 11: Policing and marking with common token buckets and logical partitions: Throughput of di�erent
TCP connections with di�erent RTT values (compliant packets sent as marked, non-compliant packets sent
unmarked). Routers are con�gured to support ERED; the bandwidth of individual links is di�erent.

the congestion window increase per ACK by 1 segment, so that
a Constant Rate TCP connection is never more bursty that a
TCP connection in slow start. Alternately, one could smooth
the sending of several segments across a longer time period,
which is readily achieved via the average and peak rate traffic
shaping mechanisms considered previously.

We argue that for aggregated rate control at a server (or
proxy), it is possible to derive a meaningful value for the con-
stanta that not only ensures fairness between connections, but
also does not result in overly aggressive behavior relative to the
rest of the network. Exploiting the idea of equivalent aggres-
siveness [7], we introduce the notion ofaggregate fairness.

Aggregate Fair: The set of connections comprising an
aggregate isaggregate fair, relative to other TCP connections
in the network, if the total (average) throughput of the aggregate
can be limited to that of a single TCP connection with RTT
roughly equal to the average RTT of the connections in the
aggregate. An aggregate fair set of connections is not overly
aggressive relative to other TCP connections in the network.

Consider a set ofn connections in an aggregate, with a
round-trip timertti for connectioni, and an average round-

trip time rttav = �Ri

n : Using the expression for throughput
derived earlier, the average aggregate throughput isRagg =
nMp
2� + n

2p�rtt2av
:We use this as the upper bound on the aggre-

gate throughput of a set of connections that is aggregate fair,
i.e., Ragg = �Ri: Solving fora we geta = 1

rtt2av
; for a

corresponding rate of window increaseg(rtti) =
rtt2

i

rtt2av
: Note

thatg(rtti) is less than 1 for a connection withrtti < rttav ;
greater than 1 for a connection withrtti > rttav ; and exactly
1 for a connection withrtti = rttav: For this reason, and
since outgoing traffic is shaped at average and peak rates, the

resulting connection window increase is not excessively bursty.

We plan to evaluate the above approach to verify that each
connection recovers from loss in an aggressive but fair manner
while improving bandwidth utilization. We are applying the
above insights to the more conservative Increase-by-K window
increase policy [7], in whichg(rtti) = K for long RTT
connections, whereK might be constant or a function of RTT.
These experimental studies would allow us to validate and/or
refine the notion of aggregate fairness.

6 Protocol Stack Extensions

We have developed a number of server extensions to implement
fair rate control of aggregated TCP connections in AIX, which
has a BSD-style UNIX protocol stack. The key components of
these extensions are depicted in Figure 12, and have evolved
from an architecture developed earlier by the authors [14].

The policy agent (pagent) is responsible for querying a
global policy repository to obtain the list of policies applicable
to the server, translating global policies to local policies, and
interacting with the kernel-resident QoS Manager module to
install policies in the protocol stack. The policy agent interacts
with the QoS Manager via an enhanced socket interface by
sending (receiving) messages to(from) special control sock-
ets [14]. In the current implementation, the policy agent runs
as a system daemon in user space, and communicates with the
policy database server via the LDAP directory access protocol.

QoS Manager is thekey component in our architecture, play-
ing a critical role in the control as well as data planes of the
protocol stack. It is entrusted with maintaining kernel state
for configured policies, managing network resources such as
buffers and link bandwidth, and managing the association be-



control flow

Applications

data flow

DATABASE

(TCP/UDP, IP)
TRANSPORT

SOCKET LAYER

best-effort 
data path data path

QoS

Policing/Shaping

QOSMGR

control path

LOWER LAYERS

Policy Agent POLICY

Figure 12: Protocol stack extensions for policy-based
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tween individual TCP connections (or UDP sessions) and the
appropriate policies. QoS Manager also implements the nec-
essary traffic conditioning functions such as traffic policing,
marking, shaping, and buffer allocation based on the desired
action on a per-policy basis. A number of minor, but carefully
placed, modifications were applied to the socket and transport
layers of the protocol stack to allow them to invoke the afore-
mentioned functions. In the current prototype, QoS Manager
is implemented as a loadable kernel extension.

6.1 Connection Aggregation and Tra�c
Conditioning

The QoS Manager module was originally designed for
application-initiated signaled QoS using per-flow (connection
or session) reservations [14]. As such, the QoS Manager sup-
ported a one-to-one association between a connection and a
reservation. However, with policy-based service differentia-
tion, a many-to-one association is instead desirable since a
policy would frequently control many connections simulta-
neously. As before, each data socket corresponding toeach
connection is tagged with a QoS handle that directly identi-
fies the associated policy. The QoS handle reduces the task
of packet classification to a single direct lookup, and is used
subsequently to correctly handle traffic originating on the data
socket. This association is established at connection setup
time and removed when the connection terminates. Since a
newly installed policy may apply to existing connections, the
many-to-one mapping is correctly maintained by searching the
entire list of existing data sockets and tagging each socket that
matches the specified filter in the new policy being installed.

The QoS Manager provides efficient traffic conditioning
support (marking, policing, and shaping) foreach policy in-
stalled on the server. Traffic conditioning functions for a given
policy are invoked for traffic on any connection controlled by
that policy; this ensures proper rate control of the entire ag-

cpu type 133MHz powerpc 33MHz power

Set timer 7.4�s 14.0�s
Handle timer 7.1�s 30.1�s
Cancel timer 6.5�s 9.6�s

Table 2: Overheads of system timer operations.

gregate. Traffic marking is implemented efficiently by storing
the desired packet marking in the connection’s protocol control
block at connection setup time. Policing is implemented for the
specified average as well as peak rates; different packet mark-
ings can be generated on the fly for in-profileand out-of-profile
packets. Traffic shaping is implemented using system timers
to delay packets (by withholding buffers) till compliance; this
can impose significant overheads, as discussed below. As an
optimization, the policing and shaping functions are invoked
only when TCP’s congestion window allows it to transmit data.

6.2 Tra�c Shaping Overheads

For accurate traffic shaping a packet must only be delayed
as long as necessary to meet compliance. Achieving the de-
sired delay via per-flow shaping timers does not scale with
the number of flows due to the significant overheads imposed
by system timers. In an earlier paper we explored the perfor-
mance impact of supporting traffic conditioning functions in
TCP/IP protocol stacks [15]. Table 2 summarizes our mea-
sured overheads of timer operations under AIX 4.2; as can
be seen, these overheads constitute a significant performance
burden for a well-optimized protocol stack, especially for the
dominant class of network traffic (i.e., TCP).

To keep system overhead low, it is desirable to reduce the
number of timers active simultaneously and/or avoid using
very fine-grain system timers. Our implementation employs
a single system shaping timer to shape traffic belonging to all
active policies; using per-policy shaping timers is possible but
the overhead would still be excessive. While this eliminates
the overheads due to per-flow shaping timers, it will often be
the case that compliant packets must wait for the shaping timer
to invoke transmission. This is because, depending on the
policies configured and application behavior, traffic associated
with different policies may need to be shaped for a wide range
of delays. One alternative is to use a fine-grain shaping timer
(e.g., an interval of 1-5 ms), but this may impose excessive
overhead since all policies may not require traffic shaping.
Our implementation provides a configurable shaping timer that
we are currently experimenting with in order to determine a
reasonable value for the shaping timer interval.

To facilitateaccurate traffic shaping with relatively coarse
shaping timers, we exploit incoming ACKs on a given con-



nection as a trigger for transmitting compliant packets from
that connection, if the congestion window is open. Thus,
compliant packets on a connection do not have to necessarily
wait for the shaping timer to expire and initiate transmission.
This is true for each TCP connection being shaped by a policy
action. The shaping timer and per-connection ACKs are the
only viable triggers for transmitting previously non-compliant
packets on a single TCP connection. Note that for accurate
traffic shaping, the ACKs must arrive regularly spaced at the
server. This, however, is often unlikely given the bursty nature
of network congestion and the observed phenomenon of ACK
compression. For aggregate rate control, however, we exploit a
number of additional triggers to realize accurate traffic shaping.

6.3 Other Shaping Triggers

With multiple connections being shaped together, the follow-
ing triggers are likely to occur with reasonable frequency: (i)
receipt of ACK on a connection with no data to send, (ii) re-
ceipt of duplicate ACKs on a connection, (iii) application send
on a connection whose congestion window is closed, and (iv)
new connection requests associated with the same policy rule.

These triggers can be used in addition to the two triggers
mentioned earlier. However, the viability and efficacy of these
triggers depends on the actual workload and design complex-
ity relative to a common fine-grain shaping timer. Each of the
above triggers (including the shaping timer) must perform the
following steps very efficiently for them to be a viable alter-
native: (a) check if a previously non-compliant policy rule is
now compliant, and (b) apply the fairness criterion to select the
appropriate connection to send a packet.

The details of our prototype implementation (including sup-
port for logical token buckets and the TCP window modifica-
tions outlined in Sections 4 and 5), performance optimizations,
and experimental results are beyond the scope of this paper,
and will appear in a forthcoming paper [16].

7 Related Work

In our work we have built upon several key areas of TCP-
related research: TCP fairness, TCP rate control, and fair flow
queuing. We discuss related work in each of these areas below.
A summary of key TCP-related research efforts, although in
the context of satellite networks, can be found in [11].

TCP Fairness: Fairness between TCP connections has been
thesubject of many recent research efforts. Router mechanisms
to enhance fairness and end-to-end performance include ac-
tive queue management schemes such as RED [9] and longest
queue drop [17]. The importance of TCP unfairness in the
congestion avoidance phase for different round-trip times is
explored and addressed via congestion window modifications

in [6] and [7]. An approach of using weighted proportional
fairness to achieve differentiated services in the Internet is pre-
sented and evaluated in [18]. An integrated congestion control
and loss recovery scheme to improve the performance of par-
allel TCP connections from a server to the same client (i.e.,
a kind of aggregate) is proposed in [19]. While not directly
relevant, this work demonstrates the benefits of sharing state
across different, but related, connections.

TCP Rate Control: Several proposals provide some form
of rate-based pacing to TCP so as to smoothen out its data flow.
While rate-based pacing [20] is primarily meant for improved
TCP performance, the proposed scheme in [8] focuses on the
dynamics and rate control of a TCP connection in the context
of Integrated Services, and considers TCP congestion window
modifications to provide a TCP connection with the desired
policed rate. Our proposed window modifications for fair rate
control of aggregated TCP connections are less aggressive than
those proposed in [8]. Ack-based pacing [12] by a network de-
vice external to the traffic source provides another mechanism
for rate control of TCP connections; however, our work focuses
on timer-based pacing inside the trafficsource. A detailed study
of traffic conditioning overheads in the context of per-flow rate
control is provided in [15]. Traffic aggregation provides both
opportunities to reduce some of these overheads, as well as
challenges in ensuring fairness while maintaining scalability.

Fair Flow Queuing: In recent years many research efforts
have explored link-level fair queuing and scheduling mecha-
nisms and analyzed their bandwidth and delay allocation prop-
erties in thecontext of per-hop and end-to-end quality of service
guarantees. Examples include weighted fair queuing (WFQ)
and its variants, and class based queuing (CBQ) for hierarchi-
cal bandwidth sharing. Our focus is instead on providing fair
sharing mechanisms at a traffic source that must aggregate TCP
connections for purposes of policy-based rate control. Being
at the transport layer, our work is complementary to link-level
fair queuing mechanisms. While not directly related, the im-
plications of per-flow queuing on TCP [21] might apply to
aggregated TCP connections if, contrary to our transport-layer
based support, the aggregation is performed at the link layer.

8 Conclusions and Future Work

In this paper we explored design considerations for policy-
based fair rate control of aggregated TCP connections at Inter-
net servers and proxies. We proposed and evaluated different
approaches for rate control of aggregated TCP connections via
policingwith marking or shaping. Specifically, we proposed an
approach that employs acommon token bucket with logical par-
titions,and simultaneously achieves high bandwidth utilization
and a high degree of fairness. Our proposed modifications to
the TCP congestion window increase during congestion avoid-



ance achieves fairness amongst a mixture of connections with
long and short lifetimes. We also described the protocol stack
extensions in our prototype implementation, and techniques to
reduce implementation overheads.

For ongoing and future work we are evaluating our pro-
posed congestion window modifications for a mix of long and
short TCP connections. For the prototype implementation,
we are also developing aggressive performance optimizations
to support traffic aggregation in a scalable fashion. A key
challenge is to exploit the available per-connection state for
accurate traffic conditioning while minimizing the complexity
of maintaining policy-connection associations, implementing
logical token buckets, and sharing the unused rate. Each of
these aspects are the subject of a forthcoming paper [16].
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