
Portable and adaptive specification
of disk bandwidth quality of service

Stephen Childs�

University of Cambridge Computer Laboratory
New Museums Site, Pembroke St.,

Cambridge CB2 3QG UK.

E-mail:Stephen.Childs@cl.cam.ac.uk

Abstract

Continuous media (CM) applications require Quality of
Service (QoS) guarantees from the disk, as well as from
the CPU and network. Their requirements can often be ex-
pressed in terms of data rates, which are portable descrip-
tions of resource needs. QoS-aware disk schedulers need an
accurate predictor of their clients’ resource usage in order
to perform admission control and limit the effect of misbe-
having clients. We present a scheme which allows the client
to directly specify its desired data rate to the scheduler. A
per-client time limit bounds the amount of time spent trying
to achieve this rate. By using feedback from the scheduler,
the client can renegotiate its time limit. The result is a sim-
ple and adaptive method of determining resource require-
ments.

1 Introduction

As PCs start to be used for disk intensive applications
such as video editing and audio recording, the limitations of
conventional disk scheduling become apparent. Multimedia
operating systems incorporate QoS-aware scheduling algo-
rithms which can honour QoS guarantees. However, the
form in which they specify resources may not suit applica-
tions very well.

Many applications processing continuous media streams
require guaranteed bandwidth from the disk. They need to
know that they can exchange data with the disk at a cer-
tain rate for the duration of their execution. This bandwidth
requirement can be expressed as(p; b), wherep is the pe-
riod, andb the number of bytes to be transferred during that
period.

A resource specification of this kind provides portability.
Applications need know nothing about the capabilities of
the underlying hardware. It is the system’s responsibility to

�The author is funded by an ICL Studentship.

translate the client’s request into the appropriate low-level
parameters.

However, from the system’s point of view, this is not
as straightforward as just ensuring that the number of disk
blocks transferred each period remains constant. The cost
in real terms (i.e. time) of getting each block of data from
disk will vary hugely, depending on the size of the request,
the time taken to move the disk head to satisfy the request,
the speed of the disk and processor, the disk interface, etc.

There is no simple way for the system to tell from a
bandwidth guarantee how much time it will need per period
to fulfil that guarantee. It might be possible to calculate
service times in advance using knowledge about the disk,
but constructing an accurate model of a disk drive is not an
easy task, as even seemingly trivial assumptions can result
in large inaccuracies [6].

2 Existing QoS scheduler

Disk-scheduling has been an active area of research for
decades. Historically, the focus was mainly on increasing
throughput by minimising seek overheads. Recently the
need to provide guaranteed service times for CM streams
has become a factor.

The disk scheduling algorithm used in the Nemesis op-
erating system [2] aims to enforce QoS guarantees. Clients
of the disk specify their QoS requirements as a tuple of the
form (p; s; x; l).1 Thep ands parameters specify the period
and time-slice for a client. A guarantee of this kind means
that a client will be allowed to spend a maximum ofs ms
performing disk transactions during each period ofp ms.

Clients are periodically allocateds ms and a deadline
of now + p ms, and are scheduled using a modified EDF
algorithm, known asAtropos[1]. Because of the difficulty
of estimating the cost of a disk transaction in advance, the
system accounts the time spent by a client in arrears.

1The x and l parameters are not used in this work, and will not be
referred to again.

This means that the transfer of one particular data unit
may take longer than the allotted time, but this will cause
the client to be descheduled until it receives a new allocation
of time at the start of its next period.

Because the scheduler is accounting time, the total
amount of resource is known, and so admission control can
be simply performed by calculating what percentage of the
total time is still uncontracted.

This time-slice/period notation is very familiar from the
field of real-time systems, where the values are usually de-
termined in advance by human experts. This is not feasible
in the case we are interested in here, where applications will
have to run on many different machines.

3 Accounting blocksand time

We have established the need for two descriptions of the
disk resource requirements of clients. Firstly, a data rate
specified by the client and secondly, a measure of the time
consumed per period, used to limit clients and perform ad-
mission control. We also need a method of tying these de-
scriptions together.

A first attempt at providing support for specifying data
rates might be to use QoS specifications describing the num-
ber of blocks to be transferred in a given period. The
scheduling algorithm would then be modified to account
blocks rather than time, and otherwise left unchanged.

The problem with this approach, as described earlier, is
the difficulty of establishing where the overload point of the
system is. Two guarantees for the same amount of blocks
may in fact cause the system to do hugely different amounts
of work. It is clear that this needs to be taken into account.

We have made this possible by accountingboththe time
used and number of blocks transferred per period. When a
client starts, it specifies a bandwidth aspiration indicating
the data rate it would like to achieve, and also an initial
time limit which specifies the maximum amount of time it
is allowed to work for in each period.

The disk scheduler starts attempting to satisfy the client’s
requests. It performs disk transactions and accounts the
time taken and number of blocks transferred. For periods
when the time limit is sufficient, it is the bandwidth speci-
fication that limits the amount of work done. As before, if
the client’s remaining time (or block) allocation falls below
zero, it cannot run again until it is next allocated time.

At the end of each period, the scheduler informs the
client of how much time it has used by invoking a call-
back function (provided by the client when it opens its con-
nection). This gives the client an opportunity to respond,
dealing with the situation as it sees fit. For example, in the
case where the client has overrun its limit the policy cur-
rently implemented renegotiates the QoS contract to obtain
a larger time limit. Figure 1 illustrates the feedback process.
As the amount of work done by each stream is still bounded

Client submits
bandwidth aspiration

and time limit. System performs work
and accounts it to client.

(Event, Time)

Adjust QoScallback

3

1

4

Client Scheduler

2Set Initial QoS

Figure 1. Interaction between client and disk
scheduler

by its time limit, the system can determine what percentage
of its resources are still available and so perform admission
control.

The problem of providing isolation remains, as applica-
tions making many seeks will cause others to need more
time as well. We need to make sure that the data rate of
an application whose stream has reached a stable state is
not compromised by new streams. One method might be to
assign a higher importance [3] to established streams. This
will be used to protect them by ensuring that in a conflict for
time, they will always have priority over a newly-entered
stream.

4 Example
To illustrate how this scheme works in practice, we will

use the example of a variable rate video application which
plays video at different resolutions (and hence bandwidths).
For the first phase of its operation it plays at 1.5 Mbit/s,
doubling to 3 Mbit/s after 100s and to 6 Mbit/s after another
100s. This is simulated by a simple program that reads a
block from disk, pauses (to simulate processing of the data),
then reads again.

The application specifies a bandwidth requirement of
1.5 Mbit/s (384 disk blocks per second). It doesn’t pro-
vide an estimate for the time slice, which it initialises to 0.
When the client is scheduled, the first unit of data is trans-
ferred. The time taken to do this is obviously greater than
the client’s current time limit (0 ms/period). The scheduler
invokes the callback function in the client, notifying it that
anOutOfTime event has occurred.

This client’s policy on receipt of anOutOfTime event
is to increase its time limit by 5% of the period. However,
this limit is still not sufficient, and the client is called back
again after the next transfer. After a number of iterations,
the client’s time limit allows it to complete the amount of
work specified, and becomes stable. Figure 2 shows this
process.

At t = 100s, the client doubles its bandwidth specifi-
cation and begins to request data from the disk at a higher
rate. Because the system is now trying to do twice as much
work per period, the old time limit is no longer sufficient,

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

M
B

its
 p

er
 s

ec
on

d/
S

am
pl

ed
 e

ve
ry

 1
s

Elapsed time (s)

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

T
im

e
(m

s)

Elapsed time (s)

Time limit
Time used

Figure 2. Throughput (top) and time used (bot-
tom) for an adapting client

and a feedback and renegotiation process similar to that
performed on start-up takes place. This occurs again at
t = 200s.

Also note that at the beginning of playback, the applica-
tion plays slowly, and then there is a spike in its time alloca-
tion as it tries to compensate for this. The scheduler invokes
the callback function with aTooMuchTime event, which
causes the client to reduce its guarantee.

5 Related work
The real-time filesystem in RT-Mach [5] uses similar

QoS specifications. Their paper mentions the possibility of
specifying bandwidth portably in disk blocks, but assumes
contiguous file layout.

The Cello [7] scheduler has been designed as part of a
multi-service filesystem and provides separate scheduling
classes for different file types.

Adaptive schemes for resource allocation are not new to
the literature. Work such as that done by Walpole [3] and
Jeffay [4] has established the usefulness of rate-based exe-
cution models and callback-based adaption for multimedia
scheduling.

6 Further work and conclusion
At the moment, the scheduler returns an event and the

amount of time remaining to the client. We need to de-
termine whether this is sufficient for the client to make an
informed decision about what action to take.

The adaption policies defined by clients determine the
usefulness of the scheme. Obviously the simple policy
presented here is limited, and better ones could be devel-
oped which benefit from the body of work already done on
adaptive systems. Modules can be built which provide pre-
defined policies for standard file types.

Our aim in this work was to make it easier for appli-
cations to specify their resource requirements in a portable
way. The combination of block- and time-based account-
ing used here makes this possible while preserving the abil-
ity to do effective admission control and limit the resource
consumed per client.

References
[1] Paul Barham. A fresh approach to file system qual-

ity of service. InProceedings of the 7th International
Workshop on Network and Operating System Support
for Digital Audio and Video, April 1997.

[2] Ian Leslie et al. The Design and Implementation of
an Operating System to Support Distributed Multime-
dia Applications. IEEE Journal on Selected Areas in
Communication, 14(7):1280–1297, September 1996.

[3] Jonathan Walpole et al. A feedback-driven proportion
allocator for real-rate scheduling. InProceedings of the
Third USENIX Symposium on Operating Systems De-
sign and Implementation, pages 145–158, February 22-
25 1999.

[4] G. K. Jeffay and D. Bennett. A rate-based execution
abstraction for multimedia computing. InProceedings
of 5th Intl. Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video, pages 67–78,
April 18-23 1995.

[5] Anastasio Molano, Kanaka Juvva, and Ragunathan Ra-
jkumar. Real-time filesystems: Guaranteeing timing
constraints for disk accesses in RT-Mach. InProceed-
ings of the IEEE Real-Time Systems Symposium. IEEE,
December 1997.

[6] Chris Ruemmler and John Wilkes. An introduction to
disk drive modelling. IEEE Computer, 27(3):17–28,
March 1994.

[7] Prashant J. Shenoy and Harrick M. Vin. Cello: A
disk scheduling framework for next-generation operat-
ing systems. InProceedings of Sigmetrics ’98, the In-
ternational Conference on Measurement and Modeling
of Computer Systems, June 1998.

