
Design Considerations for Integrated Proxy Servers

Sambit Sahu , Prashant Shenoy andDon Towlsey

Department of Computer Science, University of Massachusetts, Amherst, MA 01003.
Email: fsahu,shenoy,towsleyg@cs.umass.edu

Abstract

Proxy servers reduce client access times as well as load on
servers and networks by caching frequently accessed web
objects. In this paper, we argue that the growing heterogene-
ity of data stored on web servers coupled with the increas-
ing diversity in application requirements have made exist-
ing proxy servers inadequate. We examine the architecture
and mechanisms required by integrated proxy servers that
address this heterogeneity in application requirements and
data characteristics. Finally, we briefly describe the archi-
tecture of an integrated proxy server that is currently being
built in our research lab.

1 Introduction

The growth of the Internet and the World Wide Web has en-
abled an increasing number of users to access vast amounts
of information stored at geographically distributed sites.
Due to the non-uniformity of information access, however,
popular objects create “hot-spots” of server and network
load, and thereby significantly increase latency for infor-
mation access [17]. Proxy servers provide a way to partly
alleviate these overheads. In such an architecture, clients
request objects from a proxy; the proxy services client re-
quests using locally cached data or by fetching the requested
object from the server. By caching frequently accessed ob-
jects and servicing requests for these objects from the cache,
proxies can reduce the load on network links and servers, as
well as reduce client access latencies.

Recently several proxy servers have been designed to ser-
vice web requests consisting of textual and image objects
[3, 16]. However, the web is rapidly evolving from a pre-
dominantly text (and image) based information system to a
full-fledged multimedia information system. A recent study
has shown that the number of audio and video (continuous
media) objects stored on web servers tripled in the first nine
months of 1998 [8]. Although continuous media objects
constitute a small fraction of the data currently stored on
such servers, it is estimated that, by 2003, more that 50% of
the data stored on servers will be continuous media [4]. Fur-
thermore, clients accessing this data are expected to range

from hand-held PDAs to high-end workstations, each hav-
ing different capabilities and service requirements. Cur-
rent web proxies designed for textual and image data nei-
ther cache continuous media data, nor deal with the diver-
sity in service requirements of users. Consequently, proxy
servers need to be extended along several dimensions to ef-
ficiently support the myriad of present and future applica-
tions. The key challenge in designing such proxy servers
is that they need to deal with heterogeneity in data charac-
teristics as well as heterogeneity in the service requirements
of applications. We refer to a proxy that meets this require-
ment as anintegrated proxy server. In this paper, we exam-
ine the architecture and mechanisms required for designing
such integrated proxy servers. Specifically, we argue that an
integrated proxy should: (i) employ a diverse set of mech-
anisms to efficiently support heterogeneous clients, (ii) al-
low these mechanisms to be dynamically composed to pro-
vide a customized per-client service, (iii) efficiently handle
a multi-resource cache consisting of memory and disk, pos-
sibly by monitoring the workload characteristics, and (iv)
employ flexible scheduling and resource management poli-
cies to maximize throughput and utility to users.

The rest of this paper is organized as follows. Section
2 reviews existing proxy servers and identifies their limita-
tions. Section 3 examines the design requirements imposed
by integrated proxy servers. Section 4 briefly describes a
proxy server architecture that meets these requirements. Fi-
nally Section 5 summarizes our observations.

2 Inadequacies of Existing Proxy Servers

Recently several proxy servers that handle conventional web
(text and image) requests have been designed [3, 16]. Since
such proxies cache large amounts of data, they employ disk-
based caches and use conventional file systems to store and
retrieve data from the disk cache. The best-effort service
provided by such file systems suffices for conventional web
requests, since such requests desire low average response
times but no absolute performance guarantees. Moreover,
these servers exploit locality in web accesses by employing
cache replacement policies such as LRU to maximize the hit
ratio.

Continuous media have significantly different character-
istics as compared to conventional data (with respect to size,
data rate, timeliness, etc), and hence, many of the mech-
anisms employed by existing proxy servers are unsuitable
for such requests. To illustrate, continuous media requests
impose real-time constraints on the storage and retrieval of
data to ensure jitter-free playback. Consequently, employ-
ing a conventional (best-effort) file system to manage the
disk cache is inadequate for this purpose. Moreover, the
server-push (streaming) paradigm is more suited to continu-
ous media requests, which is fundamentally different from
the client-pull paradigm employed by existing proxies to
service conventional requests. Finally, continuous media
accesses are predominantly sequential in nature. Cache re-
placement policies such as LRU employed by existing proxy
servers are known to be ineffective for sequential accesses
[2].

Several research groups have investigated the design of
specialized continuous media proxies to alleviate some of
the drawbacks of conventional web proxies. Most of these
efforts have focused on designing mechanisms for handling
continuous media requests and a large number of mech-
anisms such as prefix caching, forward error correction,
smoothing, batching and transcoding have been proposed
[1, 7, 11, 12]. Most continuous media proxies support only
a subset of these mechanisms and appropriately parameter-
ize them to specific user needs. However, the increasing
heterogeneity in the service requirements of users has made
it difficult, if not impossible, to support a diverse workload
using a small set of mechanisms. Consequently, a proxy
will need to employ a rich set of mechanisms to support het-
erogeneous clients. Furthermore, it will need to allow its
service to be tailored to the user needs (by allowing var-
ious mechanisms to be dynamically combined to create a
customized per-client service). Existing continuous media
proxies neither allow dynamic composition of mechanisms
to create a customized service, nor do they allow modular
extensions to the set of supported mechanisms. Moreover,
much of the effort in designing such proxies has focused on
mechanisms for efficiently handling user requests, and the
issue of managing continuous data on a disk-based cache
has not received much attention. Finally, continuous media
proxies are designed for audio and video requests and typi-
cally do not handle conventional web requests.

A simple approach for servicing multiple application
classes is to employ a separate proxy for each application
class and use an an integration layer that provides a logi-
cally unified view to applications. Although conceptually
elegant, the static partitioning of resources among compo-
nent proxy servers inherent in this approach can lead to
severe under-utilization of resources, especially in scenar-
ios with dynamically fluctuating workloads [14]. Moreover,
since service requirements can vary even within an applica-
tion class (e.g., loss-tolerant video, delay-intolerant video,

etc), implementing a separate component proxy for each
sub-class can further exacerbate this problem. Use of a sin-
gle integrated proxy, on the other hand, enables the server to
dynamically multiplex its resources among various classes,
which yields better utilization and better application perfor-
mance [13, 14].

In fact, some recently released commercial proxy servers,
such as Inktomi’s Traffic Server, employ the physically in-
tegrated architecture and can manage both continuous me-
dia and conventional web requests [9, 10]. Such servers also
employ specialized placement techniques, instead of general
purpose file systems, to store and retrieve objects from disk,
which allows them to improve server throughput. However,
even these state of the art proxy servers employ a fixed set of
mechanisms to handle various classes of requests and do not
allow composition of various mechanisms to provide cus-
tomized service.

In summary, existing proxy servers are unsuitable for
managing a heterogenous clientele accessing data with di-
verse characteristics. This motivates the need for designing
an integrated proxy server to address these limitations. Next,
we examine the design requirements for such a proxy server.

3 Requirements for Integrated Proxy
Servers

A physically integrated proxy server should achieve efficient
utilization of server resources while managing heterogeneity
in application requirements and data characteristics. Meet-
ing these objectives imposes several requirements on the
proxy server.

� Composability:To efficiently support clients with dif-
ferent service requirements, an integrated proxy server
should tailor its service to meet needs of individual
clients. To achieve this objective, the proxy server
should employ a rich set of mechanisms andallow
these mechanisms to be dynamically composed to cre-
ate a customized per-client service.Thus, smoothing
and transcoding could be combined to service a low-
bandwidth client, whereas forward error correction and
prefix caching mechanisms could be combined to ser-
vice a client that has low delay and loss tolerance. The
proxy server architecture should also facilitate easy ad-
dition of new mechanisms to support requirements of
future clients as well as allow newly added mechanisms
to be composed with the set of existing mechanisms.

� Multi-resource cache management:Since an integrated
proxy caches large amounts of data, it employs a disk-
based cache to store these objects and employ a smaller
memory cache to improve latencies for frequently ac-
cessed objects. Managing such a multi-resource cache
necessitates the development of novel cache replace-
ment and cache management policies that take advan-

tage of the workload characteristics. Whereas the cache
replacementpolicy determineswhich objects to store
in the cache (and which ones to evict), the cacheman-
agementpolicy determineswhereto store an object in
the cache (e.g., memory, disk, both). A cache replace-
ment policy suitable for integrated proxy environments
should take into account diverse sizes of objects as well
as differences in access characteristics of objects when
making replacement decisions. Most existing cache re-
placement policies deal with homogeneous objects and
access characteristics and hence, are unsuitable for this
purpose. The design of a cache management policy
suitable for integrated proxies has not received much
attention in the literature. The key challenge in design-
ing such a policy is to developefficient techniques to
monitor the workload and maintain access statistics so
as to aid its decisions.Based on these statistics, the
policy may prefetch objects from disk to memory in an-
ticipation of their access. The policy may also have to
trade one resource against another when making deci-
sions on storing and migrating objects. For example, it
may decide to store large hot continuous media objects
on disk, rather than in memory, and utilize the cache
space in memory to store a large number of small text
objects. Finally, the policy may decide to store por-
tions of an object (e.g., continuous media prefixes) in
memory and the remainder on disk to reduce access la-
tencies.

� Scheduling and resource management:Since an inte-
grated proxy services requests with different require-
ments, it must ensure that these requests do not inter-
fere with each other. For instance, real-time continu-
ous media requests should not affect the response times
of best-effort web requests, and a burst of best-effort
web requests should not affect the real-time guaran-
tees provided to continuous media requests. Hence, the
scheduling algorithm employed by the proxy should
protect various classes from one another, while pro-
viding all the benefits of dynamic resource sharing.
Furthermore, each client request arriving at the proxy
triggers one or more cache requests (especially long-
lived continuous media requests that periodically re-
trieve data from the cache for steaming). In such a
scenario, the scheduling algorithm should ensure that
it aligns the service provided with the requirements of
individual cache requests.

In general, resource management techniques employed
by the proxy must address the challenge of inte-
gration—efficiently managing requests and data with
diverse characteristics. To do so, the proxy can employ
a single integrated technique for each resource to man-
age all classes. Alternatively, the proxy can allow mul-
tiple data-type specific techniques to manage a resource

Network Subsystem

Session Manager

Composable Services Layer

Cache Manager

Request Scheduler

 Buffer
Subsystem

 Disk
Subsystem

Figure 1: Architecture of our integrated proxy server

and employ mechanisms that enable their coexistence.

� Operating system issues:An integrated proxy server
can provide performance guarantees to applications
only in conjunction with an operating system that can
itself allocate resources in a predictable manner. Thus,
we assume that the underlying operating system em-
ploys predictable resource allocation techniques for re-
sources such as CPU, disks and network interfaces.
Moreover, unlike video and web servers that are dom-
inated by read requests, a significant portion of the
workload at a proxy consists of writes and deletes (re-
sulting from evictions of cold objects and fetching new
objects into the cache). Consequently, the operating
system must employ placement policies that minimize
fragmentation of disk space resulting from frequent
writes and deletes. The placement policy should also
efficiently handle the storage of diverse objects rang-
ing from small text files to large continuous media files.
Most existing placement policies have been either de-
veloped for predominantly read-only continuous me-
dia workloads in video servers or for small textual files
stored in conventional file systems; hence, these polices
are unsuitable for proxy workloads.

4 Architecture of an Integrated Proxy
Server

We are designing an integrated proxy server that meets the
requirements outlined in Section 3. Figure 1 depicts the key
components of our architecture. A novel feature of our ar-
chitecture is thecomposable services layerthat provides fa-
cilities to dynamically compose mechanisms as well as to
add support for new mechanisms. Conceptually, each mech-

anism in this layer either transforms (modifies) the request
stream or the data stream; a sequence of mechanisms can
then be combined to provide customized service. For in-
stance, smoothing mechanisms modify the request schedule
to smooth out bit rate variations, whereas transcoding mech-
anisms modify the data stream; together they can provide
smoothed transcoded continuous media streams to users.
Besides the composable services layer, our architecture con-
sists of a number of other components such as: (i) thenet-
work subsystemthat provides interfaces (e.g., http) to fa-
cilitate client-proxy and proxy-server communication, (ii) a
session managerthat manages and maintains state of active
client sessions, (iii) acache managerthat instantiates cache
management and cache replacement policies to manage a
two level cache consisting of memory and disk, (iv) are-
quest schedulerthat partitions the server bandwidth fairly
across classes while meeting requirements (e.g., deadlines)
of individual requests and (v)buffer and disk subsystemsthat
manage storage and retrieval of objects from memory and
disk, respectively.

Separately, we are also designing QLinux, a QoS-
enhanced Linux kernel (jointly with AT&T Research and
the Univ. of Texas) that can allocate resources in a pre-
dictable manner.1 Specifically, the kernel employs: (i) the
H-SFQ CPU scheduler that allocates CPU bandwidth fairly
among application classes [5], (ii) the SFQ link scheduler
that can fairly allocate network link bandwidth to network
flows [6], and (iii) the Cello disk scheduler that can support
disk requests with diverse requirements [15]. We plan to
use this QoS-enhanced Linux kernel as the substrate for our
integrated proxy server.

5 Concluding Remarks

In this paper, we argued that the growing heterogeneity of
data objects in the web and the increasing diversity in appli-
cation requirements have made conventional proxy servers
inadequate. We examined the architecture and mechanisms
required by integrated proxy servers to address this hetero-
geneity in application requirements and data characteristics.
Finally, we briefly outlined the architecture of an integrated
proxy server that is currently being built in our research lab.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active Service Frame-
work and Its Application to Real-time Multimedia Transcod-
ing. In Proceedings of ACM SIGCOMM Conference, Van-
couver, Canada, pages 178–189, September 1998.

[2] P. Cao.Application Controlled File Caching and Prefetching.
PhD thesis, Princeton University, 1996.

1The current version of QLinux is available from
http://www.cs.umass.edu/˜lass/software/qlinux.

[3] A. Chankhunthod, P B. Danzig, C. Neerdaels, M F. Schwartz,
and K J. Worrell. A Hierarchical Internet Object Cache. In
Proceedings of the 1996 USENIX Technical Conference, San
Diego, CA, January 1996.

[4] G. A. Gibson, J.S. Vitter, and J. Wilkes. Storage and I/O Is-
sues in Large-Scale Computing.ACM Workshop on Strategic
Directions in Computing Research, ACM Computing Surveys,
1996. http://www.medg.lcs.mit.edu/doyle/sdcr.

[5] P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler
for Multimedia Operating Systems. InProceedings of the
Second Symposium on Operating Systems Design and Imple-
mentation, pages 107–121, October 1996.

[6] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queu-
ing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks. InProceedings of ACM SIGCOMM’96,
pages 157–168, August 1996.

[7] K A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Tech-
nique for True Video-on-Demand Services. InProceedings
of 6th ACM Conference on Multimedia, Bristol, UK, pages
191–200, September 1998.

[8] Streaming Media Caching White Paper. Techni-
cal report, Inktomi Corporation, Available on-line at
http://www.inktomi.com/products/traffic/tech/streaming.html,
1999.

[9] Traffic Server Product Details. Inktomi Corporation,
http://www.inktomi.com/products/traffic, 1999.

[10] NetCache Product Details. Network Appliance, Inc.,
http://www.netapp.com/products/internetprod.html, 1999.

[11] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Support-
ing Stored Video: Reducing Rate Variability and End-to-
End Resource Requirements through Optimal Smoothing. In
Proceedings of ACM SIGMETRICS, Philadelphia, PA, May
1996.

[12] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for
Multimedia Streams. InProceedings of the IEEE Infocom’99,
New York, NY, March 1999.

[13] S. Shenker. Fundamental Design Issues for the Future In-
ternet. IEEE Journal of Selected Areas in Communications,
13:1176–1188, September 1995.

[14] P. Shenoy, P. Goyal, and H M. Vin. Architectural Consid-
erations for Next Generation File Systems. Technical Re-
port TR98-48, Dept. of Computer Science, Univ. of Mas-
sachusetts at Amherst, 1998.

[15] P Shenoy and H M. Vin. Cello: A Disk Scheduling Frame-
work for Next Generation Operating Systems. InProceed-
ings of ACM SIGMETRICS Conference, Madison, WI, pages
44–55, June 1998.

[16] Squid Internet Object Cache Users Guide. Available on-line
at http://squid.nlanr.net, 1997.

[17] R. Tewari, M. Dahlin, H M. Vin, and J. Kay. Beyond Hi-
erarchies: Design Considerations for Distributed Caching on
the Internet. InProceedings of the 19th International Con-
ference on Distributed Computing Systems (ICDCS) (to ap-
pear), June 1999.

