
Coordinated Congestion Management and Bandwidth Sharing for
Heterogeneous Data Streams

Venkata N. Padmanabhan
Microsoft Research

padmanab@microsoft.com

Abstract
Many of the busiest servers in the Internet consist of

clusters of nodes that serve out data of heterogeneous
types. At a given point in time, a user could be receiving
multiple concurrent data streams, both real-time and non-
real-time, that originate at a single server node, multiple
nodes in the same server cluster, or nodes in separate
clusters. In this paper, we argue that significant
performance benefits can accrue from a coordinated
approach to congestion management and bandwidth
sharing across the concurrent data streams. We discuss
several challenges that arise in this context and outline a
coordination architecture that addresses these
challenges.

1 Introduction
Many of the busiest servers1 in the Internet consist of

large clusters of nodes that serve out data of
heterogeneous types. The kinds of information served may
include text, images, and streaming audio/video. The
information is typically transferred from servers to clients
via unicast. This tends to be the case even for audio/video
streams because often these correspond to playback rather
than live transmission, so unicast rather than multicast is
used.

A user may, in general, be receiving multiple data
streams, both real-time and non-real-time, simultaneously.
For example, as the HTML and the inline images for a
news story are being downloaded, the user may also play a
short video clip of the news event together with
background audio commentary for a richer multimedia
experience. In some sense, the audio and video clips are
“inline” just as images have always been in Web pages.
The relative importance of the data streams could vary
dynamically. At certain times, the quality of the video
stream may be of the utmost importance to the user
whereas at other times quick download of the inline
images may take priority.

From the viewpoint of data transport, the challenge is
to coordinate these data streams, both to ensure overall

1 In this paper, we use the terms "sender" and "server",
and likewise the terms "receiver", "client", and "user"
interchangeably. This is solely for ease of exposition.

network well-being and to optimize user-perceived
performance. Coordinated congestion management
ensures that the data streams learn about and respond
appropriately to congestion events at shared bottleneck
link(s). Coordinated bandwidth sharing enables bandwidth
to be apportioned to the streams according to their
dynamically-varying, user-specified priority.

The task of coordinating the disparate data streams is
particularly challenging because of the many possible
configurations of the server node(s) transmitting the data:

1. All of the data streams could originate from a
single physical server node.

2. The data streams could originate from multiple
nodes in the same server cluster. For instance, in large
Internet servers such as CNN and MSNBC, the real-time
and the non-real-time streams are often served by distinct
nodes, both because of the administrative convenience of
managing the two kinds of nodes separately and because
of their specialized hardware requirements (e.g., large and
fast disks are needed for video servers).

3. The streams could originate from distinct server
clusters. For instance, the user may be receiving a traffic
cam video stream from the highway department site and
listening to background audio commentary from a sports
site while also browsing other unrelated Web sites.

The location of the servers transmitting the data
streams impacts not only the feasibility and granularity of
coordination across the server nodes, but also the
appropriateness of such coordination. Coordination is
appropriate only if the streams share a bottleneck link.
Moreover, differential treatment of the streams within the
network (e.g., diffserv [RFC2475]) would complicate the
coordination issue.

In this paper, we discuss the potential benefits of
coordination, the challenges that arise, and an architecture
that addresses these challenges. We focus specifically on
the problem of coordination of a heterogeneous collection
of real-time and non-real-time streams. This problem is
more general than the coordination of a homogeneous set
of streams (e.g., the set of concurrent TCP connections
corresponding to the inline images on a Web page). Also,
users may find it quite natural to tune in to concurrent
heterogeneous data streams. For instance, people often
like to read while listening to audio in the background.

In the remainder of this paper, we present a brief
overview of our prior work on TCP Session (Section 2),
discuss potential benefits of coordination between
concurrent data streams (Section 3), discuss some specific
challenges that arise and potential solutions (Section 4),
outline a coordination architecture (Section 5), survey
related work (Section 6), and finally present a summary
(Section 7).

2 Overview of TCP Session
The goal of TCP Session [Pad98] is to coordinate

multiple concurrent TCP connections between a pair of
hosts. A typical application of TCP Session is the
coordination of concurrent TCP connections between a
Web server and a client, where the connections
correspond to the individual constituents of a Web page.
TCP Session has three components:

1. Integrated congestion control: maintains a
session-wide congestion window to make the ensemble of
TCP connections as well-behaved as an individual TCP
connection.

2. Connection scheduling: implements a scheduler
and provides an API for applications to explicitly control
the (relative) bandwidth share of concurrent connections.

3. Integrated loss recovery: exploits packet ordering
information across concurrent connections to improve the
effectiveness of data-driven loss recovery.

While quite effective in the problem space it is
targeted at, TCP Session falls short in the general setting
outlined in Section 1. Nevertheless, its key ideas carry
over to the new setting, as we elaborate in the following
sections.

3 Opportunities for Optimization
We begin by discussing several opportunities for

performance optimization via coordination between
concurrent real-time and non-real-time data streams.

3.1 Initialization of Congestion State
It is important for short connections, such as Web

transfers, to utilize the available network bandwidth
effectively. However, the short length of these
connections does not permit extensive probing, so the
sender has to resort to guesswork based on past
information (such as the old congestion window), which
has the potential of degrading overall network
performance when the guess is incorrect.

A long-running real-time stream could be an excellent
source of information for a new TCP connection that
shares a common bottleneck link and is trying to
determine the state of the network in order to initialize its
congestion state. RTCP receiver reports [RFC1889]
would keep the real-time sender informed of the packet
loss rate and the delay jitter along the end-to-end network
path. The new TCP connection could start up aggressively
if the real-time stream has experienced relatively little

congestion in the recent past and conservatively if the
opposite is true.

3.2 Improved Loss Recovery
Short TCP connections tend to suffer because of the

reduced effectiveness of data-driven loss recovery, which
is caused by the lack of a sufficient number of packets in
the pipe to trigger the threshold number of duplicate acks
needed for fast retransmission. The duplicate acks are
basically needed to disambiguate packet loss from packet
reordering. In a manner akin to integrated loss recovery in
TCP Session, packets belonging to a (long-lived) real-
time stream could be used to augment the effectiveness of
such disambiguation by providing a regular “heartbeat” in
the form of a steady stream of packets. Synchronized
sender timestamps could be used to infer the relative
ordering of packets belonging to the TCP connection and
the real-time stream. The underlying assumption is that all
packets traverse a common path through the network.

3.3 Bandwidth Sharing Across Streams
As noted in [Pad98,GB99], user-perceived

performance in the context of the Web is not just a
function of the overall data transfer rate but is also
dependent on the (dynamically varying) perceptual
importance of the individual streams. When the total
bandwidth available to all the data streams being received
by a client is limited, it is desirable to have the ability to
explicitly control the (relative) allocation to each stream
(based on user/application-level information) rather than
have the streams arrive at a bandwidth share based purely
on network dynamics.

The options available for adjusting the data rate of a
real-time stream includes changing the frame rate, frame
size, quantization granularity, sampling rate, coding
algorithm, etc. For non-real-time streams, there is the
option of speeding up or slowing down the download of
an object in addition to transcoding it or choosing an
appropriate-sized one among multiple discrete object
formats.

4 Challenges and Potential Solutions
We now turn to the challenges that arise in exploiting

the opportunities mentioned above and discuss ways of
addressing these challenges.

4.1 Shared Bottleneck Link
Coordinated congestion management and bandwidth

sharing across data streams are both predicated on the
assumption that the streams share a common bottleneck
link. After all, if there is not a common bottleneck link,
the data streams might as well operate independently of
one another.

We propose three techniques, to be used in some
combination, to determine when the data streams share a
bottleneck link:

1. Topology discovery: If the streams share (much
of) the same end-to-end path, it is likely that they also
share a bottleneck link. This would tend to be the case
when data streams originate at the same or nearby servers
and are destined for the same or nearby clients (cases 1
and 2 in Section 1).

2. Correlating loss rate observed at the receiver: If
the loss rate observed at the receiver on two streams is
highly correlated, the streams are likely to share a
bottleneck link. This technique would be useful when, for
instance, the bottleneck link happens to be the client’s
access link (e.g., a dialup or an ISDN line). It is likely to
be more effective for long-lived streams than for short-
lived Web connections.

3. Enhanced ECN: As we proposed in [Pad96],
routers could augment their explicit congestion
notifications (ECN) with unique, router-specific IDs. The
receiver could then infer the common points of
congestion, if any, shared by multiple streams. Such a
mechanism would be quite useful even if it were deployed
only on the subset of routers that are likely to be attached
to bottleneck links (e.g., access routers).

4.2 Differentiated Services Mechanisms
The use of differentiated services (diffserv)

mechanisms such as priority dropping or priority
scheduling could adversely impact the schemes discussed
in Section 3. For instance, if packets of a real-time audio
stream are assigned a higher drop priority than those of
non-real-time TCP streams, then the packet loss rate
observed by the audio stream can no longer be used to
determine how aggressive TCP start up should be (Section
3.1). However, if packet scheduling is still FIFO, the
utility of the real-time stream in aiding loss recovery in the
TCP streams (Section 3.2) would remain unaffected.

However, if priority scheduling were employed,
neither state initialization nor loss recovery using real-
time streams would be appropriate, but bandwidth sharing
(Section 3.3) may still be appropriate.

In general, diffserv poses an interesting challenge to
determining if there is a shared bottleneck link. While a
low-priority and a high-priority stream may experience
very different loss rates, the bandwidth used by the high-
priority stream may well have a bearing on the loss rate
observed by the low-priority one, so coordinated
bandwidth sharing may still be appropriate. The enhanced
ECN scheme, proposed in Section 4.1, could be quite
useful in this context.

4.3 Differing Notions of Fairness and Priority
Even with a shared bottleneck link, it is unclear what

exactly would constitute fair sharing of the bottleneck link
bandwidth. For example, consider two clients, A and B.
Suppose that A is receiving one data stream each from the
CNN and the MSNBC servers whereas B is only receiving
a data stream from CNN. If all three streams traverse a
common bottleneck link, how should they share its

bandwidth? From the viewpoint of the clients, an equal
allocation of bandwidth to the two streams destined for A
put together and the single stream destined for B may be
considered fair. However, this may not necessarily be fair
from the viewpoint of the servers, since CNN would be
receiving a larger share of the bottleneck bandwidth than
MSNBC. As another example, consider that, in general,
only a subset of the streams destined for a client contain
data sought by the user; the others contain data "thrust"
upon the user (e.g., advertisements) by servers. So the
servers and the clients may be at odds on how to apportion
bandwidth to the streams. We believe that the resolution
of these issues is essentially a matter of policy.

Figure 1 A depiction of our coordination architecture.

5 Outline of Coordination Architecture
In this section, we present a brief outline of an

architecture to coordinate congestion management and
bandwidth sharing across streams that do not necessarily
share end points (Figure 1).

5.1 Multiple Levels of Coordination
Our architecture includes coordination at three

different levels:

1. Intra-host: individual server nodes coordinate the
set of data streams that they transmit to the same client
host, using fine-grained, packet-level mechanisms as in
TCP Session.

2. Intra-cluster: multiple nodes in a server cluster
(and likewise clients on a LAN) share congestion
information amongst themselves using a coordination bus-
based [McC96] mechanism. The nodes adapt the
frequency of updates sent on the coordination bus based
both on the overall control traffic load and the degree to
which new information is different from old information.
(For instance, an update is likely to be sent sooner if it

Web
Server

Coordination bus

Video
Server

Audio
Server

Client

Bottleneck
Link

Cluster A Cluster B

Router supporting
Enhanced ECN

corresponds to a more significant change in the network
conditions.)

3. Inter-cluster: servers on different clusters
coordinate their actions using feedback from the common
client (or neighboring clients) who they are in
communication with. We elaborate on this in the
following sub-sections.

5.2 Receiver-based Control
The receiver (client) plays a key role in our

architecture:

1. It conveys the user’s (dynamically-varying)
preferences (translated into relative bandwidth shares for
individual streams) to the servers.

2. It provides congestion feedback to the servers. The
feedback message would ideally identify the congested
router (if the enhanced ECN scheme from Section 4.1 is in
use), so that server nodes can effectively aggregate
congestion information from multiple sources.

3. It facilitates inter-cluster coordination where
otherwise server-to-server communication would be
expensive, and moreover, the servers may not be aware of
the need to coordinate.

5.3 Coordinated Bandwidth Sharing
The receiver uses two pieces of information to

determine the relative bandwidth shares of data streams:
the user-specified priority, and the identity of streams that
share a bottleneck link. Bandwidth sharing among streams
originating from the same server node can be
accomplished using a mechanism akin to connection
scheduling in TCP Session. However, the task is much
harder when the streams originate from widely separate
servers. We consider two alternative approaches:

1. Congestion feedback filtering: the receiver could
adjust the relative frequency of congestion notifications
sent to each server, while ensuring that the aggregate
congestion response is at the appropriate level.

2. Explicit flow control: the receiver could clamp the
bandwidth used by a stream to be no more than a fixed
(absolute) level, using a flow control mechanism such as
the TCP receiver-advertised window or the RTSP "pause"
method [RFC2326].

While explicit flow control is conceptually simpler, it
suffers from the drawback that it does not adapt well to
dynamic variation in the available bandwidth. We believe
that both alternatives have a place in our architecture.

6 Related Work
There has been a fair amount of research in the

general area of coordinating multiple concurrent data
streams. Schemes aimed at coordinating congestion
management include TCP Control Block Interdependence
[RFC2140], our previous work on TCP Session [Pad98],
extensions thereof to include UDP streams [RBS99], and
router-based coordination [SAA99]. Efforts aimed at

improving user-perceived performance via the explicit
coordination of concurrent streams include connection
scheduling in TCP Session [Pad98], progressive Web data
delivery [GB99], and receiver-driven data transport in
WebTP [GCM+99]. While this collective body of
research has addressed several relevant problems, the
main drawback, in our opinion, is that the individual
proposals focus only on coordination across data streams
between a pair of hosts and/or they only consider TCP
streams. Neither of these simplifications is appropriate in
the context of this paper.

7 Summary
In this paper, we have argued that clients on the

Internet are increasingly more likely to be communicating
simultaneously with one or more servers via real-time and
non-real-time data streams. As such, the coordination of
congestion management and bandwidth sharing across the
data streams is highly desirable. We have outlined the
potential benefits of such coordination, some challenges
that arise, and a coordination architecture that addresses
these challenges. We are investigating these issues in
greater detail in ongoing research.

Acknowledgements
We thank Lili Qiu and the anonymous reviewers for

their thoughtful comments.

 References
[GCM+99] R. Gupta, M. Chen, S. McCanne, J. Walrand, “WebTP: A

Receiver-Driven Web Transport Protocol”, University of
California at Berkeley, USA, 1998.

[GB99] J. Gilbert, R. Brodersen, “Globally Progressive Interactive Web
Delivery”, Proc. IEEE Infocom, March 1999.

[McC96] S. McCanne, "Scalable Compression and Transmission of
Internet Multicast Video", Ph.D. Thesis, University of California
at Berkeley, USA, December 1996.

[Pad96] V. N. Padmanabhan, “Receiver-oriented Data Transport with
Persistent Sessions”, Qualifying Exam Proposal, University of
California at Berkeley, USA, October 1996.
http://www.cs.berkeley.edu/~padmanab/research/quals-proposal.ps

[Pad98] V. N. Padmanabhan, “Addressing the Challenges of Web Data
Transport”, Ph.D. Thesis, University of California at Berkeley,
USA, September 1998.
http://www.cs.berkeley.edu/~padmanab/phd-thesis.html.

[RBS99] H. Rahul, H. Balakrishnan, S. Seshan, “An End-System
Architecture for Unified Congestion Management”, Proc. HotOS,
March 1999.

[RFC1889] H. Schulzrinne at al., “RTP: A Transport Protocol for Real-
Time Applications”, RFC-1889, IETF, January 1996.

[RFC2140] J. Touch, “TCP Control Block Interdependence”, RFC-
2140, IETF, April 1997.

[RFC2326] H. Schulzrinne at al., "Real Time Streaming Protocol",
RFC-2326, IETF, April 1998.

[RFC2475] S. Blake et al., “An Architecture for Differentiated
Services”, RFC 2475, IETF, December 1998.

[SAA+99] S. Savage et al., “Detour: A Case for Informed Internet
Routing and Transport”, IEEE Micro, Vol. 19, No. 1,
January/February 1999.

